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Abstract Under some plausible assumptions, we find that
the dual formulation of linearized gravity in D = 5 can be
nontrivially coupled to the topological BF model in such a
way that the interacting theory exhibits a deformed gauge
algebra and some deformed, on-shell reducibility relations.
Moreover, the tensor field with the mixed symmetry (2,1)

gains some shift gauge transformations with parameters
from the BF sector.

PACS 11.10.Ef

1 Introduction

Topological field theories [1, 2] are important in view of
the fact that certain interacting, non-Abelian versions are re-
lated to a Poisson structure algebra [3] present in various
versions of Poisson sigma models [4–10], which are known
to be useful at the study of two-dimensional gravity [11–20]
(for a detailed approach, see [21]). It is well known that pure
three-dimensional gravity is just a BF theory. Moreover, in
higher dimensions general relativity and supergravity in the
Ashtekar formalism may also be formulated as topological
BF theories with some extra constraints [22–25]. In view
of these results, it is important to know the self-interactions
in BF theories as well as the couplings between BF mod-
els and other theories. This problem has been considered
in the literature in relation with self-interactions in various
classes of BF models [26–33] and couplings to other (mat-
ter or gauge) fields [34–38] by using the powerful BRST
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cohomological reformulation of the problem of construct-
ing consistent interactions within the Lagrangian [39, 40]
or the Hamiltonian [41] setting, based on the computation
of local BRST cohomology [42–44]. Other aspects concern-
ing interacting, topological BF models can be found in [45]
and [46].

On the other hand, tensor fields in “exotic” representa-
tions of the Lorentz group, characterized by a mixed Young
symmetry type [47–53], held the attention lately on some
important issues, like the dual formulation of field theories
of spin two or higher [54–61], the impossibility of consis-
tent cross-interactions in the dual formulation of linearized
gravity [62], a Lagrangian first-order approach [63, 64] to
some classes of massless or partially massive mixed sym-
metry type tensor gauge fields, suggestively resembling to
the tetrad formalism of General Relativity, or the derivation
of some exotic gravitational interactions [65, 66]. An impor-
tant matter related to mixed symmetry type tensor fields is
the study of their consistent interactions, among themselves
as well as with other gauge theories [67–80].

The purpose of this paper is to investigate the consistent
interactions in D = 5 between a massless tensor gauge field
with the mixed symmetry of a two-column Young diagram
of type (2,1) and an Abelian BF model with a maximal
field spectrum (a scalar field, two sorts of one-forms, two
types of two-forms and a three-form). It is worth mention-
ing the duality of a free massless tensor gauge field with the
mixed symmetry (2,1) to the Pauli–Fierz theory in D = 5
dimensions. In view of this feature, we can state that our
paper searches the consistent couplings in D = 5 between
the dual formulation of linearized gravity and a topologi-
cal BF model. Our analysis relies on the deformation of the
solution to the master equation by means of cohomological
techniques with the help of the local BRST cohomology. We
mention that the self-interactions in the (2,1) sector have
been investigated in [62] and the couplings in D = 5 that
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can be added to an Abelian BF model with a maximal field
spectrum have been constructed in [32].

Under the hypotheses of analyticity in the coupling con-
stant, spacetime locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the preser-
vation of the number of derivatives on each field, we find a
deformation of the solution to the master equation that pro-
vides nontrivial cross-couplings. The emerging Lagrangian
action contains mixing-component terms of order one in the
coupling constant that couple the massless tensor field with
the mixed symmetry (2,1) mainly to one of the two-forms
and to the three-form from the BF sector. Also, it is inter-
esting to note the appearance of some self-interactions in
the BF sector at order two in the coupling constant that are
strictly due to the presence of the tensor field with the mixed
symmetry (2,1) (they all vanish in its absence). The gauge
transformations of all fields are deformed and, in addition,
some of them include gauge parameters from the comple-
mentary sector. This is the first known case where the gauge
transformations of the tensor field with the mixed symmetry
(2,1) do change with respect to the free ones (by shifts in
some of the BF gauge parameters). The gauge algebra and
the reducibility structure of the coupled model are strongly
modified during the deformation procedure, becoming open
and respectively on-shell, by contrast to the free theory,
whose gauge algebra is Abelian and the reducibility rela-
tions hold off-shell. Our result is important because dual for-
mulations of linearized gravity have proved to be extremely
rigid in allowing consistent interactions to themselves as
well as to many matter or gauge theories. Actually, we think
that this is the first time when a massless tensor field with the
mixed symmetry (k,1) allows consistent interactions that
fulfill all the working hypotheses precisely in the dimension
D = k + 3 where it becomes dual to the Pauli–Fierz theory.

2 The free theory: Lagrangian, gauge symmetries and
BRST differential

The starting point is a free theory in D = 5, whose La-
grangian action is written as the sum between the La-
grangian action of an Abelian BF model with a maximal
field spectrum (a single scalar field, ϕ, two types of one-
forms, Hμ and Vμ, two kinds of two-forms, Bμν and φμν ,
and one three-form, Kμνρ ) and the Lagrangian action of a
free, massless tensor field with the mixed symmetry (2,1)

tμν|α (meaning it is antisymmetric in its first two indices
tμν|α = −tνμ|α and fulfills the identity t[μν|α] ≡ 0)

SL
0

[
Φα0

] =
∫

d5x

[
Hμ∂μϕ + 1

2
Bμν∂[μVν]

+ 1

3
Kμνρ∂[μφνρ]

− 1

12

(
Fμνρ|αFμνρ|α − 3FμνF

μν
)]

≡
∫

d5x
(

LBF
0 + Lt

0

)
, (1)

where we used the notations

Φα0 = (
ϕ,Hμ,Vμ,Bμν,φμν,K

μνρ, tμν|α
)
, (2)

Fμνρ|α = ∂[μtνρ]|α, Fμν = σραFμνρ|α. (3)

Everywhere in this paper the notations [μν · · ·ρ] and
(μν · · ·ρ) signify complete antisymmetry and respectively
complete symmetry with respect to the (Lorentz) indices
between brackets, with the conventions that the minimum
number of terms is always used and the result is never di-
vided by the number of terms. It is convenient to work
with the Minkowski metric tensor of ‘mostly plus’ signa-
ture σμν = σμν = diag(− + + + +) and with the five-
dimensional Levi–Civita symbol εμνρλσ defined according
to the convention ε01234 = −ε01234 = −1.

Action (1) is found to be invariant under the gauge trans-
formations

δΩϕ = 0, δΩHμ = 2∂νε
μν, (4)

δΩVμ = ∂με, δΩBμν = −3∂ρεμνρ, (5)

δΩφμν = ∂[μξν], δΩKμνρ = 4∂λξ
μνρλ, (6)

δΩtμν|α = ∂[μθν]α + ∂[μχν]α − 2∂αχμν, (7)

where all the gauge parameters are bosonic, with εμν , εμνρ ,
ξμνρλ, and χμν completely antisymmetric and θμν symmet-
ric. By Ω we denoted collectively all the gauge parameters
as

Ωα1 ≡ (
εμν, ε, εμνρ, ξμ, ξμνρλ, θμν,χμν

)
. (8)

The gauge transformations given by (4)–(7) are off-shell re-
ducible of order three (the reducibility relations hold every-
where in the space of field history, and not only on the sta-
tionary surface of field equations). This means that:

1. There exist some transformations of the gauge parame-
ters (8)

Ωα1 → Ωα1 = Ωα1
(
Ω̄α2

)
, (9)

such that the gauge transformations of all fields vanish
strongly (first-order reducibility relations)

δΩ(Ω̄)Φ
α0 = 0. (10)

2. There exist some transformations of the first-order re-
ducibility parameters Ω̄α2

Ω̄α2 → Ω̄α2 = Ω̄α2
(
Ω̌α3

)
, (11)
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such that the gauge parameters vanish strongly (second-
order reducibility relations)

Ωα1
(
Ω̄α2

(
Ω̌α3

)) = 0. (12)

3. There exist some transformations of the second-order re-
ducibility parameters Ω̌α3

Ω̌α3 → Ω̌α3 = Ω̌α3
(
Ω̂α4

)
, (13)

such that the first-order reducibility parameters vanish
strongly (third-order reducibility relations)

Ω̄α2
(
Ω̌α3

(
Ω̂α4

)) = 0. (14)

4. There is no nontrivial transformation of the third-order
reducibility parameters Ω̂α4 that annihilates all the
second-order reducibility parameters

Ω̌α3
(
Ω̂α4

) = 0 ⇔ Ω̂α4 = 0. (15)

This is indeed the case for the model under study. In this
situation a complete set of first-order reducibility parameters
Ω̄α2 is given by

Ω̄α2 ≡ (
ε̄μνρ, ε̄μνρλ, ξ̄ , ξ̄μνρλσ , θ̄μ

)
, (16)

and transformations (9) have the form

εμν
(
Ω̄α2

) = −3∂ρε̄μνρ,
(17)

ε
(
Ω̄α2

) = 0, εμνρ
(
Ω̄α2

) = 4∂λε̄
μνρλ,

ξμ

(
Ω̄α2

) = ∂μξ̄ ,
(18)

ξμνρλ
(
Ω̄α2

) = −5∂σ ξ̄μνρλσ ,

θμν

(
Ω̄α2

) = 3∂(μθ̄ν),
(19)

χμν

(
Ω̄α2

) = ∂[μθ̄ν],

with ε̄μνρ , ε̄μνρλ, and ξ̄ μνρλσ completely antisymmetric.
Further, a complete set of second-order reducibility parame-
ters Ω̌α3 can be taken as

Ω̌α3 ≡ (
ε̌μνρλ, ε̌μνρλσ

)
, (20)

and transformations (11) are

ε̄μνρ
(
Ω̌α3

) = 4∂λε̌
μνρλ,

(21)
ε̄μνρλ

(
Ω̌α3

) = −5∂σ ε̌μνρλσ ,

ξ̄
(
Ω̌α3

) = 0, ξ̄μνρλσ
(
Ω̌α3

) = 0,
(22)

θ̄μ

(
Ω̌α3

) = 0,

where both ε̌μνρλ and ε̌μνρλσ are some arbitrary, bosonic,
completely antisymmetric tensors. Next, a complete set of
third-order reducibility parameters Ω̂α4 is represented by

Ω̂α4 ≡ (
ε̂μνρλσ

)
, (23)

and transformations (13) can be chosen of the form

ε̌μνρλ
(
Ω̂α4

) = −5∂σ ε̂μνρλσ ,
(24)

ε̌μνρλσ
(
Ω̂α4

) = 0,

with ε̂μνρλσ an arbitrary, completely antisymmetric ten-
sor. Finally, it is easy to check (15). Indeed, we work in
D = 5, such that ∂σ ε̂μνρλσ = 0 implies ε̂μνρλσ = const.
Since ε̂μνρλσ are arbitrary smooth functions that effectively
depend on the spacetime coordinates, it follows that the only
possible choice is ε̂μνρλσ = 0.

We observe that the free theory under study is a usual lin-
ear gauge theory (its field equations are linear in the fields),
whose generating set of gauge transformations is third-order
reducible, such that we can define in a consistent manner its
Cauchy order, which is found to be equal to five.

In order to construct the BRST symmetry of this free the-
ory, we introduce the field/ghost and antifield spectra (2) and

ηα1 = (
Cμν,η, ημνρ,Cμ, Gμνρλ, Sμν,Aμν

)
, (25)

ηα2 = (
Cμνρ, ημνρλ,C, Gμνρλσ , Sμ

)
, (26)

ηα3 = (
Cμνρλ, ημνρλσ

)
, ηα4 = (

Cμνρλσ
)
, (27)

Φ∗
α0

= (
ϕ∗,H ∗

μ,V ∗μ,B∗
μν,φ

∗μν,K∗
μνρ, t∗μν|α)

, (28)

η∗
α1

= (
C∗

μν, η
∗, η∗

μνρ,C∗μ, G∗
μνρλ, S

∗μν,A∗μν
)
, (29)

η∗
α2

= (
C∗

μνρ, η∗
μνρλ,C

∗, G∗
μνρλσ , S∗μ

)
, (30)

η∗
α3

= (
C∗

μνρλ, η
∗
μνρλσ

)
, η∗

α4
= (

C∗
μνρλσ

)
. (31)

The fermionic ghosts (25) correspond to the bosonic gauge
parameters (8), and therefore Cμν , ημνρ , Gμνρλ, and Aμν

are completely antisymmetric and Sμν is symmetric. The
bosonic ghosts for ghosts (26) are respectively associated
with the first-order reducibility parameters (16), such that
Cμνρ , ημνρλ, and Gμνρλσ are completely antisymmetric.
Along the same line, the fermionic ghosts for ghosts for
ghosts ηα3 from (27) correspond to the second-order re-
ducibility parameters (20). As a consequence, the ghost
fields Cμνρλ and ημνρλσ are again completely antisymmet-
ric. Finally, the bosonic ghosts for ghosts for ghosts for
ghosts ηα4 from (27) are associated with the third-order re-
ducibility parameters (23), so Cμνρλσ is also completely an-
tisymmetric. The star variables represent the antifields of
the corresponding fields/ghosts. Their Grassmann parities
are obtained via the usual rule ε(χ∗

Δ) = (ε(χΔ) + 1)mod 2,
where we employed the notations

χΔ = (
Φα0, ηα1 , ηα2, ηα3 , ηα4

)
,

(32)
χ∗

Δ = (
Φ∗

α0
, η∗

α1
, η∗

α2
, η∗

α3
, η∗

α4

)
.

It is understood that the antifields are endowed with the same
symmetry/antisymmetry properties like those of the corre-
sponding fields/ghosts.
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Since both the gauge generators and the reducibility func-
tions are field-independent, it follows that the BRST dif-
ferential reduces to s = δ + γ , where δ is the Koszul–Tate
differential, and γ means the exterior longitudinal deriva-
tive. The Koszul–Tate differential is graded in terms of the
antighost number (agh, agh (δ) = −1, agh (γ ) = 0) and en-
forces a resolution of the algebra of smooth functions de-
fined on the stationary surface of field equations for action
(1), C∞ (Σ), Σ : δSL

0 /δΦα0 = 0. The exterior longitudinal
derivative is graded in terms of the pure ghost number (pgh,
pgh(γ ) = 1, pgh (δ) = 0) and is correlated with the origi-
nal gauge symmetry via its cohomology in pure ghost num-
ber zero computed in C∞ (Σ), which is isomorphic to the
algebra of physical observables for this free theory. These
two degrees of generators (2) and (25)–(31) from the BRST
complex are valued like

pgh
(
Φα0

) = 0, pgh
(
ηαm

) = m,
(33)

pgh
(
Φ∗

α0

) = pgh
(
η∗

αm

) = 0,

agh
(
Φα0

) = agh
(
ηαm

) = 0, agh
(
Φ∗

α0

) = 1,
(34)

agh
(
η∗

αm

) = m + 1,

for m = 1,4. The actions of the differentials δ and γ on the
above generators read

(
δΦα0 = 0, δηαm = 0, m = 1,4

) ⇐⇒ δχΔ = 0, (35)

δϕ∗ = ∂μHμ, δH ∗
μ = −∂μϕ,

(36)
δV ∗μ = −∂νB

μν,

δB∗
μν = −1

2
∂[μVν], δφ∗μν = ∂ρKμνρ,

(37)
δK∗

μνρ = −1

3
∂[μφνρ],

δt∗μν|α = −1

2
∂ρ

(
Fρμν|α − σα[μFνρ]) ,

(38)
δC∗

μν = ∂[μH ∗
ν],

δη∗ = −∂μV ∗μ, δη∗
μνρ = ∂[μB∗

νρ],
(39)

δC∗μ = 2∂νφ
∗μν,

δG∗
μνρλ = ∂[μK∗

νρλ], δS∗μν = −∂ρt∗ρ(μ|ν),
(40)

δA∗μν = 3∂ρt∗μν|ρ,

δC∗
μνρ = −∂[μC∗

νρ], δη∗
μνρλ = −∂[μη∗

νρλ],
(41)

δC∗ = ∂μC∗μ,

δG∗
μνρλσ = −∂[μG∗

νρλσ ],
(42)

δS∗μ = 2∂ρ

(
3S∗ρμ + A∗ρμ

) ≡ 2∂ρ C∗ρμ,

δC∗
μνρλ = ∂[μC∗

νρλ], δη∗
μνρλσ = ∂[μη∗

νρλσ ],
(43)

δC∗
μνρλσ = −∂[μC∗

νρλσ ],

and respectively

(
γΦ∗

α0
= 0, γ η∗

αm
= 0, m = 1,4

) ⇐⇒ γχ∗
Δ = 0, (44)

γ ϕ = 0, γHμ = 2∂νC
μν, γ Vμ = ∂μη, (45)

γBμν = −3∂ρημνρ, γ φμν = ∂[μCν],
(46)

γKμνρ = 4∂λGμνρλ,

γ tμν|α = ∂[μSν]α + ∂[μAν]α − 2∂αAμν,
(47)

γCμν = −3∂ρCμνρ,

γ η = 0, γ ημνρ = 4∂λη
μνρλ, γCμ = ∂μC, (48)

γ Gμνρλ = −5∂σ Gμνρλσ , γ Sμν = 3∂(μSν),
(49)

γAμν = ∂[μSν],

γCμνρ = 4∂λC
μνρλ, γ ημνρλ = −5∂σ ημνρλσ ,

(50)
γC = 0,

γ Gμνρλσ = 0, γ Sμ = 0,
(51)

γCμνρλ = −5∂σ Cμνρλσ ,

γ ημνρλσ = 0, γCμνρλσ = 0. (52)

The overall degree that grades the BRST complex is named
ghost number (gh) and is defined like the difference between
the pure ghost number and the antighost number, such that
gh(δ) = gh(γ ) = gh(s) = 1.

The BRST symmetry admits a canonical action s· =
(·, S̄), where its canonical generator (gh(S̄) = 0, ε(S̄) = 0)
satisfies the classical master equation (S̄, S̄) = 0. The sym-
bol (, ) denotes the antibracket, defined by decreeing the
fields/ghosts conjugated with the corresponding antifields.
In the case of the free theory under discussion the solution
to the master equation takes the form

S̄ = SL
0 +

∫
d5x

[
2H ∗

μ∂νC
μν + V ∗μ∂μη

− 3B∗
μν∂ρημνρ + φ∗μν∂[μCν]

+ 4K∗
μνρ∂λGμνρλ

+ t∗μν|α(∂[μSν]α + ∂[μAν]α − 2∂αAμν)

− 3C∗
μν∂ρCμνρ + 4η∗

μνρ∂λη
μνρλ

+ C∗μ∂μC − 5G∗
μνρλ∂σ Gμνρλσ

+ 3S∗μν∂(μSν) + A∗μν∂[μSν] + 4C∗
μνρ∂λC

μνρλ

− 5η∗
μνρλ∂σ ημνρλσ − 5C∗

μνρλ∂σ Cμνρλσ
]
. (53)

The solution to the master equation encodes all the infor-
mation on the gauge structure of a given theory. We re-
mark that in our case solution (53) decomposes into terms
with antighost numbers ranging from zero to four. Let us
briefly recall the significance of the various terms present
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in the solution to the master equation. Thus, the part with
the antighost number equal to zero is nothing but the La-
grangian action of the gauge model under study. The com-
ponents of antighost number equal to one are always pro-
portional with the gauge generators. If the gauge algebra
were non-Abelian, then there would appear terms simulta-
neously linear in the antighost number two antifields and
quadratic in the pure ghost number one ghosts. The absence
of such terms in our case shows that the gauge transforma-
tions are Abelian. The terms from (53) with higher antighost
numbers give us information on the reducibility functions. If
the reducibility relations held on-shell, then there would ap-
pear components linear in the ghosts for ghosts (ghosts of
pure ghost number strictly greater than one) and quadratic
in the various antifields. Such pieces are not present in (53)
since the reducibility relations (10), (12), and (14) hold off-
shell. Other possible components in the solution to the mas-
ter equation offer information on the higher-order structure
functions related to the tensor gauge structure of the theory.
There are no such terms in (53) as a consequence of the fact
that all higher-order structure functions vanish for the theory
under study.

3 Strategy

We begin with a “free” gauge theory, described by a La-
grangian action SL

0 [Φα0], invariant under some gauge trans-
formations

δεΦ
α0 = Zα0

α1
εα1 ,

δSL
0

δΦα0
Zα0

α1
= 0, (54)

and consider the problem of constructing consistent interac-
tions among the fields Φα0 such that the couplings preserve
both the field spectrum and the original number of gauge
symmetries. This matter is addressed by means of reformu-
lating the problem of constructing consistent interactions as
a deformation problem of the solution to the master equation
corresponding to the “free” theory [39, 40]. Such a refor-
mulation is possible due to the fact that the solution to the
master equation contains all the information on the gauge
structure of the theory. If a consistent interacting gauge the-
ory can be constructed, then the solution S̄ to the master
equation associated with the “free” theory, (S̄, S̄) = 0, can
be deformed into a solution S,

S̄ → S = S̄ + λS1 + λ2S2 + · · ·
= S̄ + λ

∫
dDx a + λ2

∫
dDx b + λ3

∫
dDx c

+ · · · (55)

of the master equation for the deformed theory

(S,S) = 0, (56)

such that both the ghost and antifield spectra of the ini-
tial theory are preserved. The symbol (, ) denotes the an-
tibracket. Equation (56) splits, according to the various or-
ders in the coupling constant (or deformation parameter) λ,
into the equivalent tower of equations

(S̄, S̄) = 0, (57)

2(S1, S̄) = 0, (58)

2(S2, S̄) + (S1, S1) = 0, (59)

(S3, S̄) + (S1, S2) = 0, (60)

2(S4, S̄) + (S2, S2) + 2(S1, S3) = 0 (61)

...

Equation (57) is fulfilled by hypothesis. The next one re-
quires that the first-order deformation of the solution to the
master equation, S1, is a cocycle of the “free” BRST differ-
ential s· = (·, S̄). However, only cohomologically nontrivial
solutions to (58) should be taken into account, as the BRST-
exact ones can be eliminated by (in general nonlinear) field
redefinitions. This means that S1 pertains to the ghost num-
ber zero cohomological space of s, H 0 (s), which is generi-
cally nonempty due to its isomorphism to the space of phys-
ical observables of the “free” theory. It has been shown
in [39, 40] (on behalf of the triviality of the antibracket map
in the cohomology of the BRST differential) that there are
no obstructions in finding solutions to the remaining equa-
tions, namely, (59), (60) and so on. However, the resulting
interactions may be nonlocal, and there might even appear
obstructions if one insists on their locality. The analysis of
these obstructions can be done with the help of cohomolog-
ical techniques. As will be seen below, all the interactions in
the case of the model under study turn out to be local.

4 Standard results

In the sequel we determine all consistent Lagrangian inter-
actions that can be added to the free theory described by (1)
and (4)–(7). This is done by means of solving the deforma-
tion equations (58)–(61), etc., with the help of specific coho-
mological techniques. The interacting theory and its gauge
structure are then deduced from the analysis of the deformed
solution to the master equation that is consistent to all orders
in the deformation parameter.

For obvious reasons, we consider only analytical, local,
Lorentz covariant, and Poincaré invariant deformations (i.e.,
we do not allow explicit dependence on the spacetime co-
ordinates). The analyticity of deformations refers to the fact
that the deformed solution to the master equation, (55), is an-
alytical in the coupling constant λ and reduces to the original
solution, (53), in the free limit λ = 0. In addition, we require
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that the overall interacting Lagrangian satisfies two further
restrictions related to the derivative order of its vertices:

(i) The maximum derivative order of each interaction ver-
tex is equal to two.

(ii) The differential order of each interacting field equa-
tion is equal to that of the corresponding free equation
(meaning that at most one spacetime derivative can act
on each field from the BF sector and at most two space-
time derivatives on the tensor field tμν|α).

If we make the notation S1 = ∫
d5x a, with a local, then

(58) (which controls the first-order deformation) takes the
local form

sa = ∂μmμ, gh (a) = 0, ε (a) = 0, (62)

for some local mμ. It shows that the nonintegrated density of
the first-order deformation pertains to the local cohomology
of s in ghost number zero, a ∈ H 0 (s|d), where d denotes
the exterior spacetime differential. The solution to (62) is
unique up to s-exact pieces plus divergences

a → a + sb + ∂μnμ. (63)

If the general solution to (62) is trivial, a = sb + ∂μnμ, then
it can be made to vanish, a = 0.

In order to analyze (62) we develop a according to the
antighost number

a =
I∑

i=0

ai, agh (ai) = i,

(64)
gh (ai) = 0, ε (ai) = 0,

and assume, without loss of generality, that the above de-
composition stops at some finite value of I . This can be
shown for instance like in [43] (Sect. 3), under the sole as-
sumption that the interacting Lagrangian at order one in the
coupling constant, a0, has a finite, but otherwise arbitrary
derivative order. Inserting (64) into (62) and projecting it on
the various values of the antighost number, we obtain the
tower of equations (equivalent to (62))

γ aI = ∂μ

(I)
m

μ

, (65)

δaI + γ aI−1 = ∂μ

(I−1)
m

μ

, (66)

δai + γ ai−1 = ∂μ

(i−1)
m

μ

, I − 1 ≥ i ≥ 1, (67)

for some local (
(i)
m

μ

)i=0,I . Equation (65) can always be re-
placed in strictly positive values of the antighost number by

γ aI = 0, I > 0. (68)

Due to the second-order nilpotency of γ (γ 2 = 0), the solu-
tion to (68) is unique up to γ -exact contributions

aI → aI + γ bI . (69)

If aI reduces only to γ -exact terms, aI = γ bI , then it can be
made to vanish, aI = 0. The nontriviality of the first-order
deformation a is translated at its highest antighost number
component into the requirement that aI ∈ HI (γ ), where
HI (γ ) denotes the cohomology of the exterior longitudinal
derivative γ in pure ghost number equal to I . So, in order to
solve (62) (equivalent with (68) and (66)–(67)), we need to
compute the cohomology of γ , H(γ ), and, as will be made
clear below, also the local homology of δ, H(δ|d).

From definitions (44)–(52) it is possible to show that
H(γ ) is spanned by

FĀ = (
ϕ, ∂μHμ, ∂[μVν], ∂μBμν,

∂[μφνρ], ∂μKμνρ,Rμνρ|αβ

)
, (70)

the antifields χ∗
Δ, and all of their spacetime derivatives as

well as by the undifferentiated objects

ηῩ = (
η,Dμνρ,C, Gμνρλσ , Sμ,ημνρλσ ,Cμνρλσ

)
. (71)

In (70) and (71) we respectively used the notations

Rμνρ|αβ = −1

2
Fμνρ|[α,β], Dμνρ = ∂[μAνρ], (72)

with f,β ≡ ∂βf . It is useful to denote by Rμν|α and Rμ the
trace and respectively double trace of Rμνρ|αβ

Rμν|α = σρβRμνρ|αβ, Rμ = σρβσ ναRμνρ|αβ. (73)

The spacetime derivatives (of any order) of all the objects
from (71) are removed from H (γ ) since they are γ -exact.
This can be seen directly from the last definition in (45), the
last present in (47), the first from (49), the second in (50),
the last from (51), and also using the relations

∂αDμνρ = γ

[
−1

2
Fμνρ|α

]
,

(74)

∂μSν = γ

[
1

2

(
1

3
Sμν + Aμν

)]
≡ γ

[
1

2
Cμν

]
.

Let eM(ηῩ ) be the elements with pure ghost number M

of a basis in the space of polynomials in the objects (71).
Then, the general solution to (68) takes the form (up, to triv-
ial, γ -exact contributions)

aI = αI

([FĀ], [χ∗
Δ])eI

(
ηῩ

)
, (75)

where agh(αI ) = I and pgh(eI ) = I . The notation f ([q])
means that f depends on q and its spacetime derivatives
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up to a finite order. The objects αI (obviously nontrivial
in H 0(γ )) will be called invariant ‘polynomials’. They are
true polynomials with respect to all variables (71) and their
spacetime derivatives, excepting the undifferentiated scalar
field ϕ, with respect to which αI may be series. This is why
we will keep the quotation marks around the word polyno-
mial(s). The result that we can replace equation (65) with
the less obvious one (68) for I > 0 is a nice consequence of
the fact that the cohomology of the exterior spacetime dif-
ferential is trivial in the space of invariant ‘polynomials’ in
strictly positive antighost numbers. These results on H(γ )

can be synthesized in the following array:

BRST pgh Grassmann parity Nontrivial object
generator from H(γ )

χ∗
Δ 0 (ε(χΔ) + 1)mod 2 [χ∗

Δ]
Φα0 0 0 [FĀ]
ηα1 1 1 η,Dμνρ ≡ ∂[μAνρ]
ηα2 2 0 C, Gμνρλσ ,Sμ

ηα3 3 1 ημνρλσ

ηα4 4 0 Cμνρλσ

(76)

where notations (2), (25)–(31), (33), and (70) should be
taken into account.

Inserting (75) in (66) we obtain that a necessary (but not
sufficient) condition for the existence of (nontrivial) solu-
tions aI−1 is that the invariant ‘polynomials’ αI are (non-
trivial) objects from the local cohomology of Koszul–Tate
differential H(δ|d) in antighost number I > 0 and in pure
ghost number zero,

δαI = ∂μ

(I−1)

j

μ

, agh
((I−1)

j

μ)
= I − 1,

(77)

pgh
((I−1)

j

μ)
= 0.

We recall that H(δ|d) is completely trivial in both strictly
positive antighost and pure ghost numbers (for instance,
see [42], Theorem 5.4, and [43]), so from now on it is under-
stood that by H(δ|d) we mean the local cohomology of δ at
pure ghost number zero. Using the fact that the free model
under study is a linear gauge theory of Cauchy order equal to
five and the general result from the literature [42, 43] accord-
ing to which the local cohomology of the Koszul–Tate dif-
ferential is trivial in antighost numbers strictly greater than
its Cauchy order, we can state that

HJ (δ|d) = 0 for all J > 5, (78)

where HJ (δ|d) represents the local cohomology of the
Koszul–Tate differential in antighost number J . Moreover,
it can be shown that if the invariant ‘polynomial’ αJ , with
agh(αJ ) = J ≥ 5, is trivial in HJ (δ|d), then it can be taken

to be trivial also in H inv
J (δ|d)

(
αJ = δbJ+1 + ∂μ

(J )
c

μ

, agh (αJ ) = J ≥ 5
)

⇒
(79)

αJ = δβJ+1 + ∂μ
(J )
γ

μ

,

with both βJ+1 and
(J )
γ

μ

invariant ‘polynomials’. Here,
H inv

J (δ|d) denotes the invariant characteristic cohomology
in antighost number J (the local cohomology of the Koszul–
Tate differential in the space of invariant ‘polynomials’). An
element of H inv

I (δ|d) is defined via an equation like (77), but
with the corresponding current an invariant ‘polynomial’.
This result together with (78) ensures that the entire invari-
ant characteristic cohomology in antighost numbers strictly
greater than five is trivial

H inv
J (δ|d) = 0 for all J > 5. (80)

It is possible to show that no nontrivial representative of
HJ (δ|d) or H inv

J (δ|d) for J ≥ 2 is allowed to involve the
spacetime derivatives of the fields [32] and [62]. Such a
representative may depend at most on the undifferentiated
scalar field ϕ. With the help of relations (35)–(43), it can be
shown that H inv (δ|d) and H(δ|d) are spanned by the ele-
ments

agh Nontrivial representative Grassmann
spanning H inv

J
(δ|d) parity

>5 None –
5 (W)μνρλσ 1
4 (W)μνρλ, η∗

μνρλσ 0

3 (W)μνρ, η∗
μνρλ,C∗, G∗

μνρλσ ,S∗μ 1

2 (W)μν, η∗, η∗
μνρ,C∗μ, G∗

μνρλ,S∗μν,A∗μν 0

(81)

where

(W)μνρλσ = dW

dϕ
C∗

μνρλσ + d2W

dϕ2

(
H ∗[μC∗

νρλσ ] + C∗[μνC
∗
ρλσ ]

)

+d3W

dϕ3

(
H ∗[μH ∗

ν C∗
ρλσ ] + H ∗[μC∗

νρC∗
λσ ]

)

+d4W

dϕ4
H ∗[μH ∗

ν H ∗
ρ C∗

λσ ]

+ d5W

dϕ5
H ∗

μH ∗
ν H ∗

ρ H ∗
λ H ∗

σ , (82)

(W)μνρλ = dW

dϕ
C∗

μνρλ + d2W

dϕ2

(
H ∗[μC∗

νρλ] + C∗[μνC
∗
ρλ]

)

+ d3W

dϕ3
H ∗[μH ∗

ν C∗
ρλ]

+ d4W

dϕ4
H ∗

μH ∗
ν H ∗

ρ H ∗
λ , (83)

(W)μνρ = dW

dϕ
C∗

μνρ + d2W

dϕ2
H ∗[μC∗

νρ]
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+ d3W

dϕ3
H ∗

μH ∗
ν H ∗

ρ , (84)

(W)μν = dW

dϕ
C∗

μν + d2W

dϕ2
H ∗

μH ∗
ν , (85)

whit W = W(ϕ) an arbitrary, smooth function depending
only on the undifferentiated scalar field ϕ.

In contrast to the spaces (HJ (δ|d))J≥2 and
(H inv

J (δ|d))J≥2, which are finite-dimensional, the cohomol-
ogy H1(δ|d) (known to be related to global symmetries and
ordinary conservation laws) is infinite-dimensional since the
theory is free. Fortunately, it will not be needed in the sequel.

The previous results on H(δ|d) and H inv(δ|d) in strictly
positive antighost numbers are important because they con-
trol the obstructions to removing the antifields from the
first-order deformation. More precisely, we can successively
eliminate all the pieces of antighost number strictly greater
that five from the nonintegrated density of the first-order de-
formation by adding solely trivial terms, so we can take,
without loss of nontrivial objects, the condition I ≤ 5 into
(64). In addition, the last representative is of the form (75),
where the invariant ‘polynomial’ is necessarily a nontrivial
object from H inv

5 (δ|d).

5 Computation of first-order deformation

In the case I = 5 the nonintegrated density of the first-order
deformation (see (64)) becomes

a = a0 + a1 + a2 + a3 + a4 + a5. (86)

We can further decompose a in a natural manner as a sum
between two kinds of deformations

a = aBF + aint, (87)

where aBF contains only fields/ghosts/antifields from the BF
sector and aint describes the cross-interactions between the
two theories.1 The piece aBF is completely known [32]. It
is parameterized by seven smooth, but otherwise arbitrary
functions of the undifferentiated scalar field, (Wa (ϕ))a=1,6

and M̄(ϕ). In the sequel we analyze the cross-interacting
piece, aint.

Due to the fact that aBF and aint involve different types
of fields and that aBF separately satisfies an equation of type
(62), it follows that aint is subject to the equation

saint = ∂μmint
μ , (88)

1Decomposition (87) does not include a component responsible for
the self-interactions of the tensor field with the mixed symmetry (2,1)

since any such component has been proved in [62] to be trivial.

for some local current mint
μ . In the sequel we determine the

general solution to (88) that complies with all the hypotheses
mentioned in the beginning of Sect. 4.

In agreement with (86), the general solution to the equa-
tion saint = ∂μmint

μ can be chosen to stop at antighost num-
ber I = 5

aint = aint
0 + aint

1 + aint
2 + aint

3 + aint
4 + aint

5 . (89)

We will show in Appendices A, B and C that we can always
take aint

5 = aint
4 = aint

3 = 0 into decomposition (89), without
loss of nontrivial contributions. Consequently, the first-order
deformation of the solution to the master equation in the in-
teracting case can be taken to stop at antighost number two

aint = aint
0 + aint

1 + aint
2 , (90)

where the components on the right-hand side of (90) are sub-
ject to (68) and (66)–(67) for I = 2.

The piece aint
2 as solution to (68) for I = 2 has the general

form expressed by (75) for I = 2, with α2 from H inv
2 (δ|d).

Looking at formula (76) and also at relation (81) in antighost
number two and requiring that aint

2 mixes BRST generators
from the BF and (2,1) sectors, we get that the most general
solution to (68) for I = 2 reads2

aint
2 = q9η

∗μνρηDμνρ + (
q10 G̃∗μ + q11C

∗μ
)
Sμ

+ q12A
∗μνηD̃μν

+ q13

2
η̃∗μνσαβD̃μαD̃νβ + S∗(k1C + k2 G̃), (91)

where all quantities denoted by q or k are some real, arbi-
trary constants.

In the above and from now on we will use a compact
writing in terms of the Hodge duals

Ψ̃ ν1...νj = 1

(5 − j)!ε
ν1...νj μ1...μ5−j Ψμ1...μ5−j

. (92)

Consequently η̃∗μν , G̃∗ε and G̃ρ are the Hodge duals of
η∗

ρλσ , G∗
μνρλ, and respectively Gμνλσ .

Substituting (91) in (66) for I = 2 and using definitions
(35)–(52), we determine the solution aint

1 under the form

aint
1 = −3q9B

∗μν

(
V ρDμνρ + 1

2
ηFμν

)

2In principle, one can add to aint
2 the terms (M̃2)

μνρηDμνρ +
1
2 (M3)

μνσαβD̃μαD̃νβ , where (M̃2)
μνρ is the Hodge dual of an ex-

pression similar to (85) with W(ϕ) → M2(ϕ), and (M3)
μν reads as

in (85) with W(ϕ) → M3(ϕ). Both M2 and M3 are some arbitrary,
real, smooth functions depending on the undifferentiated scalar field.
It can be shown that the above terms finally lead to trivial interactions,
so they can be removed from the first-order deformation.
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−
(

q10

2
K̃∗μν + q11φ

∗μν

)
Aμν

− 3q12t
∗μν|ρ

(
VρD̃μν + 1

2
ηF̃μν|ρ

)

+ q13

2
B̃∗μνρσαβF̃μα|ρD̃νβ

− 2t∗μ
(

k1C
μ − k2

5
G̃μ

)
+ āint

1 , (93)

where F̃λμ|α is the Hodge dual of F
νρσ
|α defined in (3) with

respect to its first three indices

F̃λμ|α = 1

3!ελμνρσ F
νρσ
|α . (94)

In the last formulas K̃λσ is the dual of the three-form Kμνρ

from action (1), B̃∗ρλσ and K̃∗λσ represent the duals of the
antifields B∗

μν and respectively K∗
μνρ from (28).

In the above āint
1 is the solution to the homogeneous equa-

tion (68) in antighost number one, meaning that āint
1 is a non-

trivial object from H (γ ) in pure ghost number one and in
antighost number one. It is useful to decompose āint

1 like in
(C.4)

āint
1 = âint

1 + ǎint
1 , (95)

with âint
1 the solution to (68) for I = 1 that ensures the con-

sistency of aint
1 in antighost number zero, namely the exis-

tence of aint
0 as solution to (67) for i = 1 with respect to

the terms from aint
1 containing the constants of type q or k,

and ǎint
1 the solution to (68) for I = 1 that is independently

consistent in antighost number zero

δǎint
1 = −γ č0 + ∂μm̌

μ
0 . (96)

With the help of definitions (35)–(52) and taking into ac-
count decomposition (C.4), we infer by direct computation

δaint
1 = δ

[
âint

1 +
(

2k1K
∗μνρ + k2

30
K̃∗μνρ

)
Dμνρ

]

+ γ c0 + ∂λj
λ
0 + χ0, (97)

where

c0 = −č0 + q13

16
Ṽ μνρλσαβF̃μα|ρF̃νβ|λ

−
(

k1φ
μν − k2

20
K̃μν

)
Fμν, (98)

χ0 = −3q9
[(

∂ [μV ν])V ρDμνρ + V μ
(
∂νη

)
Fμν − V μηRμ

]

+ 1

18

(
q10φ̃

μνρ + 6q11K
μνρ

)
Dμνρ

− 3q12

4

[
∂ρ

(
Fρμν|α − σα[μFνρ])]

× (2VαD̃μν + ηF̃μν|α)

+ q13

8
εμνρλσ σαβR̃μα|λσ (2VρD̃νβ + ηF̃νβ|ρ), (99)

and jλ
0 are some local currents. In the above Ṽ μνρλ and φ̃μνλ

represent the Hodge duals of the one-form Vσ and respec-
tively of the two-form φρσ from (2) and R̃λσ |αβ is nothing
but the Hodge dual of the tensor R

μνρ
|αβ defined in (72)

with respect to its first three indices, namely

R̃λσ |αβ = 1

3!ελσμνρR
μνρ
|αβ . (100)

Inspecting (97), we observe that (67) for i = 1 possesses so-
lutions if and only if χ0 expressed by (99) is γ -exact mod-
ulo d . A straightforward analysis of χ0 shows that this is not
possible unless

q9 = q10 = q11 = q12 = q13 = 0. (101)

Now, we insert conditions (101) in (91) and identify the
most general form of the first-order deformation in the inter-
acting sector at antighost number two

aint
2 = S∗(k1C + k2 G̃). (102)

The same conditions replaced in (97) enable us to write

âint
1 = −

(
2k1K

∗μνρ + k2

30
φ̃∗μνρ

)
Dμνρ. (103)

Introducing (103) in (95) and then the resulting result to-
gether with (101) in (93), we obtain

aint
1 = −2t∗μ

(
k1C

μ + k2

5
G̃μ

)

−
(

2k1K
∗μνρ + k2

30
φ̃∗μνρ

)
Dμνρ + ǎint

1 . (104)

Next, we determine ǎint
1 as the solution to the homo-

geneous (68) for I = 1 that is independently consistent in
antighost number zero, i.e. satisfies (96). According to (75)
for I = 1 the general solution to (68) for I = 1 has the form

ǎint
1 = t∗μν|ρ(

Lμν|ρη + L
αβγ
μν|ρDαβγ

)

+ (
V ∗

α Mα
μνρ + ϕ∗Mμνρ + H ∗

α M̄α
μνρ

+ B∗
αβMαβ

μνρ + φ∗
αβM̄αβ

μνρ + K∗
αβγ Mαβγ

μνρ

)
Dμνρ

+ (
V ∗

α Nα + ϕ∗N + H ∗
α N̄α + B∗

αβNαβ

+ φ∗
αβN̄αβ + K∗

αβγ Nαβγ
)
η, (105)

where all the quantities denoted by L, M , N , M̄ , or N̄ are
bosonic, gauge-invariant tensors, and therefore they may de-
pend only on FĀ given in (70) and their spacetime deriva-
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tives. The functions Lμν|ρ and L
αβγ
μν|ρ exhibit the mixed sym-

metry (2,1) with respect to their lower indices and, in ad-
dition, L

αβγ
μν|ρ is completely antisymmetric with respect to

its upper indices. The remaining functions, M , M̄ , N , and
N̄ , are separately antisymmetric (where appropriate) in their
upper and respectively lower indices.

In order to determine all possible solutions (105) we de-
mand that ǎint

1 mixes the BF and (2,1) sectors and (for the
first time) explicitly implement the assumption on the deriv-
ative order of the interacting Lagrangian discussed in the
beginning of Sect. 4 and structured in requirements (i) and
(ii). Because all the terms involving the functions N or N̄

contain only BRST generators from the BF sector, it fol-
lows that each such function must contain at least one tensor
Rμνρ|αβ defined in (72), with F as in (3). The corresponding
terms from ǎint

1 , if consistent, would produce an interacting
Lagrangian that does not agree with requirement (ii) with
respect to the BF fields and therefore we must take

Nα = N = N̄α = Nαβ = N̄αβ = Nαβγ = 0. (106)

In the meantime, requirement (ii) also restricts all the func-
tions M and M̄ to be derivative-free. Since the undifferen-
tiated scalar field is the only element among FĀ and their
spacetime derivatives that contains no derivatives, it follows
that all M and M̄ may depend at most on ϕ. Due to the fact
that we work in D = 5 and taking into account the various
antisymmetry properties of these functions, it follows that
the only eligible representations are

Mα
μνρ = Mμνρ = M̄α

μνρ = 0, (107)

Mαβ
μνρ = U13ε

αβ
μνρ, M̄αβ

μνρ = U14ε
αβ

μνρ,

Mαβγ
μνρ = 1

6
U15δ

α[μδβ
ν δ

γ
ρ], (108)

with U13, U14, and U15 some real, smooth functions of ϕ.
The same observation stands for Lμν|ρ and L

αβγ
μν|ρ , so their

tensorial behavior can only be realized via some constant
Lorentz tensors. Nevertheless, there is no such constant ten-
sor in D = 5 with the required mixed symmetry properties,
and hence we must put

Lμν|ρ = 0, L
αβγ
μν|ρ = 0. (109)

Inserting results (106)–(109) in (105), it follows that the
most general (nontrivial) solution to equation (68) for I = 1
that complies with all the working hypotheses, including
that on the differential order of the interacting Lagrangian,
is given by

ǎint
1 = εμνρλσ

(
U13B

∗
μν + U14φ

∗
μν

)
Dρλσ

+ U15K
∗μνρDμνρ. (110)

By acting with δ on (110) and using definitions (35)–(52)
we infer

δǎint
1 = γ

[(−3U14K̃
μν + 2U15φ

μν
)
Fμν

]

+ ∂α

(
εμνρλαU13VμDνρλ

− εμνρλσ U14K
αμνDρλσ + U14φμνD

αμν
)

+ εμνρλσ

[− (
∂μU13

)
V ν + (∂αU14)Kαμν

]
Dρλσ

− (∂μU15)φνρDμνρ

+ 2Fμν(6U14∂[μG̃ν] − U15∂[μCν]). (111)

Comparing (111) with (96), we conclude that function U13

reduces to a real constant and meanwhile functions U14 and
U15 must vanish

U13 = u13, U14 = 0 = U15, (112)

so (110) becomes

ǎint
1 = εμνρλσ u13B

∗
μνDρλσ , (113)

which produces trivial deformations because it is a trivial
element from H1(δ|d) :
ǎint

1 = δ
(
εμνρλσ u13η

∗
μνρAλσ

)

+ ∂μ

(
εμνρλσ u13B

∗
νρAλσ

)
(114)

and by further taking

ǎint
1 = 0. (115)

As a consequence, we can safely take the nontrivial part
of the first-order deformation in the interaction sector in
antighost number one, (104), of the form

aint
1 = −2t∗μ

(
k1C

μ + k2

5
G̃μ

)

−
(

2k1K
∗μνρ + k2

30
φ̃∗μνρ

)
Dμνρ. (116)

In addition, (115) leads to

č0 = 0, m̌
μ
0 = 0 (117)

in (96). Replacing now (101) and (117) in (97), we are able
to identify the piece of antighost number zero from the first-
order deformation in the interacting sector as

aint
0 =

(
k1φ

μν − k2

20
K̃μν

)
Fμν + āint

0 , (118)

where āint
0 is the solution to the ‘homogeneous’ equation in

antighost number zero

γ āint
0 = ∂μm̄

μ
0 . (119)
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We will prove in Appendix D that the only solution to (119)
that satisfies all our working hypotheses, including that on
the derivative order of the interacting Lagrangian, is āint

0 =
0, such that the nontrivial part of the first-order deformation
in the interaction sector in antighost number zero reads

aint
0 =

(
k1φ

μν − k2

20
K̃μν

)
Fμν. (120)

The main conclusion of this section is that the general
form of the first-order deformation of the solution to the
master equation as solution to (58) for the model under study
is expressed by

S1 =
∫

d5x
(
aBF + aint), (121)

where aBF can be found in [32] and

aint = aint
0 + aint

1 + aint
2

= S∗(k1C + k2 G̃) − 2t∗μ
(

k1C
μ + k2

5
G̃μ

)

−
(

2k1K
∗μνρ + k2

30
φ̃∗μνρ

)
Dμνρ

+
(

k1φ
μν − k2

20
K̃μν

)
Fμν. (122)

It is now clear that the first-order deformation is parameter-
ized by seven arbitrary, smooth functions of the undifferen-
tiated scalar field ((Wa (ϕ))a=1,6 and M̄(ϕ) corresponding
to aBF and by two arbitrary, real constants (k1 and k2 from
aint). We will see in the next section that the consistency of
the deformed solution to the master equation in order two in
the coupling constant will restrict these functions and con-
stants to satisfy some specific equations.

6 Computation of higher-order deformations

With the first-order deformation at hand, in the sequel we de-
termine the higher-order deformations of the solution to the
master equation, governed by (59)–(61), etc., which comply
with our working hypotheses.

In the first step we approach the second-order deforma-
tion, S2, as (nontrivial) solution to (59). If we denote by Δ

the nonintegrated density of the antibracket (S1, S1) and by
b the nonintegrated density associated with S2,

(S1, S1) =
∫

d5x Δ, S2 =
∫

d5x b, (123)

then (59) takes the local form

Δ + 2sb = ∂μnμ, (124)

with nμ a local current. By direct computation it follows that
Δ decomposes as

Δ = ΔBF + Δint, (125)

where ΔBF involves only BRST generators from the BF sec-
tor and each term from Δint depends simultaneously on the
BRST generators of both sectors (BF and mixed symme-
try (2,1)), such that Δint couples the two theories. Conse-
quently, decomposition (125) induces a similar one at the
level of the second-order deformation

b = bBF + bint (126)

and (124) becomes equivalent to two equations, one for the
BF sector and the other for the interacting sector

ΔBF + 2sbBF = ∂μnBF
μ , (127)

Δint + 2sbint = ∂μnint
μ . (128)

Equation (127) has been completely solved in [32], where
it was shown that it possesses only the trivial solution

bBF = 0 (129)

and, in addition, the seven functions (Wa)a=1,6 and M̄(ϕ)

that parameterize aBF are subject to the following equations:

dM̄(ϕ)

dϕ
W1(ϕ) = 0,

(130)
W1(ϕ)W2(ϕ) = 0,

W1(ϕ)
dW2(ϕ)

dϕ
− 3W2(ϕ)W3(ϕ)

+ 6W5(ϕ)W6(ϕ) = 0, (131)

W2(ϕ)W3(ϕ) + W5(ϕ)W6(ϕ) = 0, (132)

W1(ϕ)
dW6(ϕ)

dϕ
+ 3W3(ϕ)W6(ϕ)

− 6W2(ϕ)W4(ϕ) = 0, (133)

W1(ϕ)W6(ϕ) = 0,
(134)

W2(ϕ)W4(ϕ) + W3(ϕ)W6(ϕ) = 0,

W2(ϕ)W5(ϕ) = 0,
(135)

W4(ϕ)W6(ϕ) = 0.

Now, we investigate the latter equation, (128). By direct
computation Δint can be brought to the form

Δint = s

[
−3

(
k1φμν − k2

20
K̃μν

)(
k1φ

μν − k2

20
K̃μν

)]

+ Δ̄int + ∂μn̄int
μ , (136)
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where n̄int
μ is a local current and

Δ̄int =
3∑

i=1

3∑

p=0

dpȲ (i)

dϕp
X̄(i)

p . (137)

In Δ̄int we used the notations

Ȳ (1) = k1W3 + k2

60
W5,

(138)
Ȳ (2) = k1W4 + k2

2 · 5!W3,

Ȳ (3) = k1W6 + k2

5! W2, (139)

and the polynomials X̄
(i)
p are listed in Appendix E (see for-

mulas (E.1)–(E.12)). It can be shown that (137) cannot be
written as a s-exact modulo d element from local functions
and therefore it must vanish

Δ̄int = 0, (140)

which further restricts the functions and constants that para-
meterize the first-order deformation to obey the supplemen-
tary equations

k1W3 + k2

60
W5 = 0,

(141)

k1W4 + k2

2 · 5!W3 = 0,

k1W6 + k2

5! W2 = 0. (142)

As a consequence, the consistency of the first-order de-
formation at order two in the coupling constant (the exis-
tence of local solutions to (59)) on the one hand restricts the
functions and constants that parameterize S1 to fulfill (130)–
(135) and (141)–(142) and, on the other hand, enables us
(via formulas (123), (126), (128), (129), (136), and (140)) to
infer the second-order deformation as

S2 = Sint
2 =

∫
d5x

[
3

2

(
k1φμν − k2

20
K̃μν

)

×
(

k1φ
μν − k2

20
K̃μν

)]
. (143)

In the second step we solve the equation that governs the
third-order deformation, namely, (60). If we make the nota-
tions

(S1, S2) =
∫

d5x Λ,

(144)

S3 =
∫

d5x c,

then (60) takes the local form

Λ + sc = ∂μpμ, (145)

with pμ a local current. By direct computation we obtain

Λ = ∂μp̄μ +
3∑

i=1

2∑

p=0

dpȲ (i)

dϕp
U(i)

p , (146)

where p̄μ is a local current and the functions U
(i)
p appear-

ing in the right-hand side of (146) are listed in Appendix
E (see formulas (E.13)–(E.21)). Taking into account the re-
sult that the functions and constants that parameterize both
the first- and second-order deformations satisfy (130)–(135)
and (141)–(142) and comparing (146) with (145), it results
that the third-order deformation can be chosen to be com-
pletely trivial

S3 = 0. (147)

Related to the equation that governs the fourth-order de-
formation, namely, (61), we have that

2 (S1, S3) + (S2, S2) = 0. (148)

From (148) and (61) we find that S4 is completely trivial

S4 = 0. (149)

Along a similar line, it can be shown that all the remaining
higher-order deformations Sk (k ≥ 5) can be taken to vanish

Sk = 0, k ≥ 5. (150)

The main conclusion of this section is that the deformed
solution to the master equation for the model under study,
which is consistent to all orders in the coupling constant,
can be taken as

S = S̄ + λS1 + λ2S2, (151)

where S̄ reads as in (53), S1 is given in (121) with aint of the
form (122), and S2 is expressed by (143). It represents the
most general solution that complies with all our working hy-
potheses (see the discussion from the beginning of Sect. 4).
We cannot stress enough that the (seven) functions and (two)
constants that parameterize the fully deformed solution to
the master equation are no longer independent. They must
obey (130)–(135) and (141)–(142).

7 The coupled theory: Lagrangian and gauge structure

In this section we start from the concrete form of (151) and
identify the entire gauge structure of the Lagrangian model
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that describes all consistent interactions in D = 5 between
the BF theory and the massless tensor field tμν|α . To this end
we recall the discussion from the end of Sect. 2 related to
the relationship between the gauge structure of a given La-
grangian field theory and various terms of definite antighost
number present in the solution of the master equation. Of
course, we assume that the functions (Wa)a=1,6, M̄ together
with the constants k1 and k2 satisfy (130)–(135) and (141)–
(142). The analysis of solutions that are interesting from the
point of view of cross-couplings (at least one of the con-
stants k1 and k2 is nonvanishing) is done in Sect. 8.

The piece of antighost number zero from (151) provides
nothing but the Lagrangian action of the interacting theory

SL[
Φα0

] =
∫

d5x

{
Hμ∂μϕ + 1

2
Bμν∂[μVν]

+ 1

3
Kμνρ∂[μφνρ]

+ λ

[
W1VμHμ + W2Bμνφ

μν

− W3φ[μνVρ]Kμνρ + M̄(ϕ)

+ εαβγ δε

(
9W4VαK̃βγ K̃δε

+ 1

4
W5Vαφβγ φδε + W6BαβKγδε

)]

− 1

12

(
Fμνρ|αFμνρ|α − 3FμνF

μν

)

+ λ

(
k1φ

μν − k2

20
K̃μν

)

×
[
Fμν + 3λ

2

(
k1φμν − k2

20
K̃μν

)]}
, (152)

where Φα0 is the field spectrum (2). The terms of antighost
number one from the deformed solution of the master equa-
tion, generically written as Φ∗

α0
Z

α0
α1η

α1 , allow the iden-
tification of the gauge transformations of action (152) via
replacing the ghosts ηα1 with the gauge parameters Ωα1

δ̄ΩΦα0 = Zα0
α1

Ωα1 . (153)

In our case, taking into account formula (151) and maintain-
ing the notation (8) for the gauge parameters, we find the
concrete form of the deformed gauge transformations:

δ̄Ωϕ = −λW1ε, (154)

δ̄ΩHμ = 2Dνε
μν + λ

(
dW1

dϕ
Hμ − 3

dW3

dϕ
Kμνρφνρ

)
ε

− 3λ
dW2

dϕ
φνρεμνρ

+ 2λ

(
dW2

dϕ
Bμν − 3

dW3

dϕ
KμνρVρ

)
ξν

+ 12λ
dW3

dϕ
Vνφρλξ

μνρλ

+ 2λ
dW6

dϕ
Bμνεναβγ δξ

αβγ δ

+ 3λKμνρ

(
4
dW4

dϕ
Vνεραβγ δξ

αβγ δ

− dW6

dϕ
ενραβγ εαβγ

)

+ λεμνρλσ

[
1

4

dW4

dϕ
ενραβγ Kαβγ ελσα′β ′γ ′Kα′β ′γ ′

ε

− dW5

dϕ
φνρ

(
Vλξσ − 1

4
φλσ ε

)]
, (155)

δ̄ΩVμ = ∂με − 2λW2ξμ − 2λεμνρλσ W6ξ
νρλσ , (156)

δ̄ΩBμν = −3∂ρεμνρ − 2λW1ε
μν

+ 6λW3
(
2φρλξ

μνρλ + Kμνρξρ

)

+ λ
(
12W4K

μνρεραβγ δξ
αβγ δ

− W5ε
μνρλσ φρλξσ

)
, (157)

δ̄Ωφμν = D
(−)
[μ ξν] + 3λ

(
W3φμνε − 2W4V[μεν]αβγ δξ

αβγ δ
)

+ 3λεμνρλσ

(
2W4K

ρλσ ε + W6ε
ρλσ

− k2

180
∂ [ρχλσ ]

)
, (158)

δ̄ΩKμνρ = 4D
(+)
λ ξμνρλ − 3λ

(
W2ε

μνρ + W3K
μνρε

)

− λεμνρλσ W5

(
Vλξσ − 1

2
φλσ ε

)

− 2λk1∂
[μχνρ], (159)

δ̄Ω tμν|α = ∂[μθν]α + ∂[μχν]α − 2∂αχμν

+ λk1σα[μξν] − λk2

5! σα[μεν]βγ δεξ
βγ δε, (160)

where, in addition, we used the notations

Dν = ∂ν − λ
dW1

dϕ
Vν,

(161)
D(±)

ν = ∂ν ± 3λW3Vν.

We observe that the cross-interaction terms,

λ

(
k1φ

μν − k2

20
K̃μν

)
Fμν,
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are only of order one in the deformation parameter and cou-
ple the tensor field tλμ|α to the two-form φμν and to the
three-form Kμνρ from the BF sector. Also, it is interesting
to see that the interaction components

3λ2

2

(
k1φ

μν − k2

20
K̃μν

)(
k1φμν − k2

20
K̃μν

)
,

which describe self-interactions in the BF sector, are strictly
due to the presence of the tensor tλμ|α (in its absence k1 =
k2 = 0, so they would vanish). The gauge transformations of
the BF fields φμν and Kμνρ are deformed in such a way to
include gauge parameters from the (2,1) sector. Related to
the other BF fields, ϕ, Hμ, Vμ, and Bμν , their gauge trans-
formations are also modified with respect to the free theory,
but only with terms specific to the BF sector. A remarkable
feature is that the gauge transformations of the tensor tλμ|α
are modified by shift terms in some of the gauge parameters
from the BF sector.

From the components of higher antighost number present
in (151) we read the entire gauge structure of the interacting
theory: the commutators among the deformed gauge trans-
formations (154)–(160), and hence the properties of the de-
formed gauge algebra, their associated higher-order struc-
ture functions, and also the new reducibility functions and
relations together with their properties. (The reducibility or-
der itself of the interacting theory is not modified by the de-
formation procedure and remains equal to that of the free
model, namely, three.) We do not give here the concrete
form of all these deformed structure functions, which is an-
alyzed in detail in Appendix F, but only briefly discuss their
main properties by contrast to the gauge features of the free
theory (see Sect. 2).

The nonvanishing commutators among the deformed
gauge transformations result from the terms quadratic in the
ghosts with pure ghost number one present in (151). Since
their form can be generically written as 1

2 (η∗
α1

C
α1

β1γ1
−

1
2Φ∗

α0
Φ∗

β0
M

α0β0
β1γ1

)ηβ1ηγ1 , it follows that the commutators
among the deformed gauge transformations only close on-
shell (on the stationary surface of the deformed field equa-
tions)

[δ̄Ω1, δ̄Ω2 ]Φα0 = δ̄ΩΦα0 + M
α0β0
Ω

δSL

δΦβ0
. (162)

Here, δSL/δΦβ0 stand for the Euler–Lagrange (EL) deriv-
atives of the interacting action (152), Ω1 and Ω2 represent
two independent sets of gauge parameters of type (8), and
Ω is a quadratic combination of Ω1 and Ω2. The exact form
of the corresponding commutators is included in the Appen-
dix F (see formulas (F.3)–(F.9)). In conclusion, the gauge
algebra corresponding to the interacting theory is open (the
commutators among the deformed gauge transformations
only close on-shell), by contrast to the free theory, where
the gauge algebra is Abelian.

The first-order reducibility functions and relations fol-
low from the terms linear in the ghosts for ghosts appear-
ing in (151). Because they can be generically set in the form
(η∗

α1
Z

α1
α2 + 1

2Φ∗
α0

Φ∗
β0

C
α0β0
α2 )ηα2 , it follows that if we trans-

form the gauge parameters Ωα1 in terms of the first-order
reducibility parameters Ω̄α2 as in

Ωα1 → Ωα1 = Zα1
α2

Ω̄α2 , (163)

then the transformed gauge transformations (153) of all
fields vanish on-shell

δΩ(Ω̄)Φ
α0 ≡ Zα0

α1
Zα1

α2
Ω̄α2 = C

α0β0

Ω̄

δSL

δΦβ0
≈ 0. (164)

Along the same line, the second-order reducibility functions
and relations are given by the terms linear in the ghosts for
ghosts for ghosts appearing in (151), which can be generi-
cally written as (η∗

α2
Z

α2
α3 − η∗

α1
Φ∗

β0
C

α1β0
α3 + · · · )ηα3 . Con-

sequently, if we transform the first-order reducibility para-
meters Ω̄α2 in terms of the second-order reducibility para-
meters Ω̌α3 as in

Ω̄α2 → Ω̄α2 = Zα2
α3

Ω̌α3 , (165)

then the transformed gauge parameters (163) vanish on-shell

Ωα1
(
Ω̄α2

(
Ω̌α3

)) ≡ Zα1
α2

Zα2
α3

Ω̌α3

= C
α1β0

Ω̌

δSL

δΦβ0
≈ 0. (166)

Finally, the third-order reducibility functions and relations
are withdrawn from the terms linear in the ghosts for ghosts
for ghosts for ghosts from (151), which have the generic
form (η∗

α3
Z

α3
α4 + η∗

α2
Φ∗

β0
C

α2β0
α4 + · · · )ηα4 , such that if we

transform the second-order reducibility parameters Ω̌α3 in
terms of the third-order reducibility parameters Ω̂α4 as in

Ω̌α3 → Ω̌α3 = Zα3
α4

Ω̂α4 , (167)

then the transformed first-order reducibility parameters
(165) again vanish on-shell

Ω̄α2
(
Ω̌α3

(
Ω̂α4

)) ≡ Zα2
α3

Zα3
α4

Ω̂α4

= C
α2β0

Ω̌

δSL

δΦβ0
≈ 0. (168)

In the above the notations Ωα1 , Ω̄α2 , Ω̌α3 , and Ω̂α4 are
the same from the free case, namely (8), (16), (20), and
(23), while the BRST generators are structured according
to formulas (25)–(31). It is now clear that the reducibil-
ity relations associated with the interacting model ((164),
(166), and (168)) only hold on-shell, by contrast to those
corresponding to the free theory ((10), (12), and respectively
(14)), which hold off-shell. Their concrete form is detailed
in Appendix F.
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8 Some solutions to the consistency equations

Equations (130)–(135) and (141)–(142), required by the
consistency of the first-order deformation, possess the fol-
lowing classes of solutions, interesting from the point of
view of cross-couplings between the BF field sector and the
tensor field with the mixed symmetry (2,1).

I. The real constants k1 and k2 are arbitrary (k2
1 + k2

2 > 0),
functions M̄ and W2 are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

W1(ϕ) = W3(ϕ) = W4(ϕ) = W5(ϕ) = 0, (169)

W6(ϕ) = − k2

5!k1
W2(ϕ). (170)

The above formulas allow one to infer directly the solu-
tion in the general case k2 = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and k2 are arbitrary (k2

1 + k2
2 > 0), functions M̄ and

W6 are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

W1(ϕ) = W3(ϕ) = W4(ϕ) = W5(ϕ) = 0, (171)

W2(ϕ) = −5!k1

k2
W6(ϕ). (172)

The last formulas are useful at writing down the solution
in the particular case k1 = 0.

II. The real constants k1 and k2 are arbitrary (k2
1 + k2

2 > 0),
functions M̄ and W5 are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

W1(ϕ) = W2(ϕ) = W6(ϕ) = 0, (173)

W3(ϕ) = − k2

60k1
W5(ϕ),

(174)

W4(ϕ) =
(

k2

5!k1

)2

W5(ϕ).

The above formulas allow one to infer directly the solu-
tion in the general case k2 = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and k2 are arbitrary (k2

1 + k2
2 > 0), functions M̄ and

W4 are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

W1(ϕ) = W2(ϕ) = W6(ϕ) = 0, (175)

W3(ϕ) = −2 · 5!k1

k2
W4(ϕ),

(176)

W5(ϕ) =
(

5!k1

k2

)2

W4(ϕ).

The last formulas are useful at writing down the solution
in the particular case k1 = 0.

III. The real constants k1 and k2 are arbitrary (k2
1 + k2

2 > 0),
functions W1 and W5 are some arbitrary, real, smooth
functions of the undifferentiated scalar field, and

W2(ϕ) = W6(ϕ) = M̄(ϕ) = 0, (177)

W3(ϕ) = − k2

60k1
W5(ϕ),

(178)

W4(ϕ) =
(

k2

5!k1

)2

W5(ϕ).

The above formulas allow one to infer directly the solu-
tion in the general case k2 = 0. This class of solutions
can be equivalently reformulated as: the real constants
k1 and k2 are arbitrary (k2

1 + k2
2 > 0), functions W1 and

W4 are some arbitrary, real, smooth functions of the un-
differentiated scalar field, and

W2(ϕ) = W6(ϕ) = M̄(ϕ) = 0, (179)

W3(ϕ) = −2 · 5!k1

k2
W4(ϕ),

(180)

W5(ϕ) =
(

5!k1

k2

)2

W4(ϕ).

The last formulas are useful at writing down the solution
in the particular case k1 = 0.

For all classes of solutions the emerging interacting the-
ories display the following common features:

1. There appear nontrivial cross-couplings between the BF
fields and the tensor field with the mixed symmetry
(2,1).

2. The gauge transformations are modified with respect to
those of the free theory and the gauge algebras become
open (only close on-shell).

3. The first-order reducibility functions are changed during
the deformation process and the first-order reducibility
relations take place on-shell.

Nevertheless, there appear the following differences be-
tween the above classes of solutions at the level of the
higher-order reducibility:

(a) For class I the second-order reducibility functions are
modified with respect to the free ones and the corre-
sponding reducibility relations take place on-shell. The
third-order reducibility functions remain those from the
free case and hence the associated reducibility relations
hold off-shell.

(b) For class II both the second- and third-order reducibility
functions remain those from the free case and hence the
associated reducibility relations hold off-shell.
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(c) For class III all the second- and third-order reducibility
functions are deformed and the corresponding reducibil-
ity relations only close on-shell.

9 Conclusion

The most important conclusion of this paper is that under the
hypotheses of analyticity in the coupling constant, space-
time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the preservation of the
number of derivatives on each field, the dual formulation of
linearized gravity in D = 5 allows for the first time non-
trivial couplings to another theory, namely with a topolog-
ical BF model, whose field spectrum consists in a scalar
field, two sorts of one-forms, two types of two-forms, and
a three-form. The deformed Lagrangian contains mixing-
component terms of order one in the deformation parameter
that couple the massless tensor field with the mixed sym-
metry (2,1) mainly to one of the two-forms and to the
three-form from the BF sector. There appear some self-
interactions in the BF sector at order two in the coupling
constant that are strictly due to the presence of the tensor
field with the mixed symmetry (2,1). One of the striking
features of the deformed model is that the gauge transforma-
tions of all fields are deformed. This is the first case where
the gauge transformations of the tensor field with the mixed
symmetry (2,1) do change with respect to the free ones (by
shifts in some of the BF gauge parameters). All the ingre-
dients of the gauge structure are modified by the deforma-
tion procedure: the gauge algebra becomes open and the re-
ducibility relations hold on-shell.
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Appendix A: No-go result for I = 5 in aint

In agreement with (86), the general solution to the equation
saint = ∂μmint

μ can be chosen to stop at antighost number
I = 5 :
aint = aint

0 + aint
1 + aint

2 + aint
3 + aint

4 + aint
5 , (A.1)

where the components on the right-hand side of (A.1) are
subject to (68) and (66)–(67) for I = 5.

The piece aint
5 as solution to (68) for I = 5 has the general

form expressed by (75) for I = 5, with α5 from H inv
5 (δ|d).

According to (81) at antighost number five, it follows that
H inv

5 (δ|d) is spanned by the generic representatives (82).
Since aint

5 should effectively mix the BF and the (2,1) tensor

field sectors in order to produce cross-couplings and (82) in-
volves only BF generators, it follows that one should retain
from the basis elements e5(ηῩ ) only the objects containing
at least one ghost from the (2,1) tensor field sector, namely
Dμνρ or Sμ. Recalling that we work precisely in D = 5, we
obtain that the general solution to (68) for I = 5 reduces to

aint
5 = 1

3!
(
(Ũ1)C + (Ũ2)G̃

)
D̃μαD̃αβD̃βνσ

μν

+ 1

2

(
(Ũ3)ηSμ − (Ũ4)D

μνρD̃ναD̃ρβσαβ
)
Sμ. (A.2)

Each tilde object from the right-hand side of (A.2) means
the Hodge dual of the corresponding non-tilde element, de-
fined in general by formula (92). The elements Ũ are dual
to (U)μ1...μ5 as in (82), with W(ϕ) respectively replaced by
the smooth function U(ϕ) depending only on the undiffer-
entiated scalar field ϕ.

Introducing (A.2) in (66) for I = 5 and recalling defini-
tions (35)–(52), we obtain

aint
4 = −1

6
D̃μαD̃αβσμν

[
(Ũ1)

λ

(
CλD̃βν + 3

2
CF̃βν|λ

)

− (Ũ2)
λ

(
1

5
G̃λD̃βν + 3

2
G̃F̃βν|λ

)]

+ 1

2
(Ũ3)

λ(VλSμ + ηCλμ)Sμ

− 1

4
(Ũ4)

λ
[
Dμνρ

(
D̃ναD̃ρβσαβ Cλμ

− 2D̃ναF̃ρβ|λσαβSμ

)

− Fμνρ|γ D̃ναD̃ρβSμσαβσγλ

] + āint
4 . (A.3)

In (A.3) (Ũ)λ are dual to (83), with W(ϕ) → U(ϕ). In addi-
tion, Cμρ is implicitly defined by formula (74) so it is a ghost
field of pure ghost number one without definite symme-
try/antisymmetry property, C∗νλ is its associated antifield,
defined such that the antibracket (Cμρ, C∗νλ) is equal to the
‘unit’ δν

μδλ
ρ

C∗νλ ≡ 3S∗νλ + A∗νλ. (A.4)

The nonintegrated density āint
4 stands for the solution to the

homogeneous equation (68) for I = 4, showing that āint
4 can

be taken as a nontrivial element of H(γ ) in pure ghost num-
ber equal to four.

At this stage it is useful to decompose āint
4 as a sum be-

tween two components

āint
4 = âint

4 + ǎint
4 , (A.5)

where âint
4 is the solution to (68) for I = 4 which is explicitly

required by the consistency of aint
4 in antighost number three

(ensures that (67) possesses solutions for i = 4 with respect
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to the terms from (A.3) containing the functions of type U )
and ǎint

4 signifies the part of the solution to (68) for I = 4
that is independently consistent in antighost number three

δǎint
4 = −γ č3 + ∂μm̌

μ
3 . (A.6)

Using definitions (35)–(52) and decomposition (A.5), by di-
rect computation we obtain that

δaint
4 = δ

[
âint

4 − 1

2
SαSα

(
(Ũ3)

μνB∗
μν

+ 1

3
(Ũ3)

μνρη∗
μνρ + 1

12
(Ũ3)

μνρλη∗
μνρλ

+ 1

60
(Ũ3)

μνρλσ η∗
μνρλσ

)]

+ γ c3 + ∂μj
μ
3 + χ3, (A.7)

where we use the notation

c3 = −č3 + 1

12
(Ũ1)

λσ D̃μρσμν

×
[
D̃ρα(φλσ D̃αν − 3CλF̃αν|σ ) + 3

2
CF̃

ρα
|λF̃αν|σ

]

− 1

240
(Ũ2)

λσ D̃μρσμν
[
D̃ρα(K̃λσ D̃αν

− 12G̃λF̃αν|σ ) − 30G̃F̃
ρα

|λF̃αν|σ
]

− 1

12
(Ũ3)

λσ

[
Sμ(6VλCσμ − ηtλσ |μ)

+ 3

2
ηCλρ Cσμσρμ

]

− 1

2

(
(Ũ3)

μνσ B∗
μν + 1

3
(Ũ3)

μνρσ η∗
μνρ

+ 1

12
(Ũ3)

μνρλσ η∗
μνρλ

)
Sα Cσα

− 1

24
(Ũ4)

λσ σαβ
[
Dμνρ(6D̃ναF̃ρβ|λCσμ

+ 3F̃να|λF̃ρβ|σ Sμ + D̃ναD̃ρβtλσ |μ)

+ 3F
μνρ

|λD̃να(D̃ρβ Cσμ − 2F̃ρβ|σ Sμ)
]
, (A.8)

χ3 = −1

4

(
(Ũ1)

λσ C + (Ũ2)
λσ G̃

)
σμνD̃μαD̃αβR̃βν|λσ

+ 1

6
(Ũ3)

μνηSρDμνρ

− 1

12
(Ũ4)

λσ σαβ
[−3R

μνρ
|λσ D̃ναD̃ρβSμ

+ DμνρD̃να(D̃ρβDλσμ − 6R̃ρβ|λσ Sμ)
]
, (A.9)

and j
μ
3 are some local currents. In (A.7)–(A.9) (Ũ)μν and

(Ũ)μνρ denote the duals of (84) and (85) with W(ϕ) →

U(ϕ). In addition, (Ũ)μνρλ represents the dual of (U)μ =
dU
dϕ

H ∗
μ and (Ũ)μνρλσ the dual of U(ϕ). Inspecting (A.7),

it follows that the consistency of aint
4 in antighost number

three, namely the existence of aint
3 as solution to (67) for

i = 4, requires the conditions

χ3 = γ ĉ3 + ∂μĵ
μ
3 (A.10)

and

âint
4 = 1

2
SαSα

(
(Ũ3)

μνB∗
μν + 1

3
(Ũ3)

μνρη∗
μνρ

+ 1

12
(Ũ3)

μνρλη∗
μνρλ

+ 1

60
(Ũ3)

μνρλσ η∗
μνρλσ

)
, (A.11)

where we made the notations ĉ3 = −(aint
3 + c3) and ĵ

μ
3 =

(3)
m

int μ

−j
μ
3 . Nevertheless, from (A.9) it is obvious that χ3 is

a nontrivial element from H(γ ) in pure ghost number four,
which does not reduce to a full divergence, and therefore
(A.10) requires that χ3 = 0, which further imply that all the
functions of type U must be some real constants

U1(ϕ) = u1, U2(ϕ) = u2,
(A.12)

U3(ϕ) = u3, U4(ϕ) = u4.

Based on (A.12), it is clear that aint
5 given by (A.2) vanishes,

and hence we can assume, without loss of nontrivial terms,
that

aint
5 = 0 (A.13)

in (A.1).

Appendix B: No-go result for I = 4 in aint

We have seen in Appendix A that we can always take (A.13)
in (A.1). Consequently, the first-order deformation of the so-
lution to the master equation in the interacting case stops at
antighost number four

aint = aint
0 + aint

1 + aint
2 + aint

3 + aint
4 , (B.1)

where the components on the right-hand side of (B.1) are
subject to (68) and (66)–(67) for I = 4.

The piece aint
4 as solution to (68) for I = 4 has the general

form expressed by (75) for I = 4, with α4 from H inv
4 (δ|d).

According to (81) at antighost number four, it follows that
H inv

4 (δ|d) is spanned by some representatives involving only
BF generators. Since aint

4 should again mix the BF and the
(2,1) tensor field sectors, it follows that one should retain
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from the basis elements e4(ηῩ ) only the objects containing
at least one ghost from the (2,1) tensor field sector, namely
Dμνρ or Sμ. The general solution to (68) for I = 4 reads

aint
4 = 1

2
η̃∗

(
q1SμSμ + q2

3
σμνD̃μαD̃αβD̃βνη

)

+ (Ũ5)
μηD̃μνS

ν

+ (
(Ũ6)

μC + (Ũ7)
μG̃

)
Sμ

− 1

4
(U8)μνρλD̃

μαD̃νβD̃ργ D̃λδσα(γ σδ)β

− 1

2
(Ũ9)

μDμνρD̃ναD̃ρβησαβ, (B.2)

where each element generically denoted by (Ũ)μ is the
Hodge dual of an object similar to (83), but with W re-
placed by the arbitrary, smooth function U , depending on
the undifferentiated scalar field, (U8)μνρλ reads as in (83)
with W(ϕ) → U8(ϕ), and q1,2 are two arbitrary, real con-
stants.

Introducing (B.2) in (66) for I = 4 and using definitions
(35)–(52), we determine the component of antighost number
three from aint in the form

aint
3 = 1

2
q1η̃

∗μSν Cμν

+ 1

6
q2η̃

∗λσμνD̃μαD̃αβ

(
D̃βνVλ + 3

2
F̃βν|λη

)

+ 1

2
(Ũ5)

μν
[
(2VμD̃νρ − ηF̃μρ|ν)Sρ + σρληD̃μρ Cνλ

]

− 1

2
(Ũ6)

μν(AμνC − 2SμCν)

− 1

2
(Ũ7)

μν

(
Aμν G̃ + 2

5
SμG̃ν

)

− 1

2
(Ũ9)

μνσαβ

[
DμλρD̃λα

(
D̃ρβVν + F̃

ρβ
|νη

)

+ 1

2
Fμλρ|νD̃λαD̃ρβη

]

− 1

2
(Ũ8)

μτ εμνρλσ D̃ναD̃ρβD̃λγ F̃ σδ|τ σα(γ σδ)β

+ āint
3 , (B.3)

where each (Ũ)μν is the Hodge dual of an object of type
(84), with W replaced by the corresponding function of
type U . Here, āint

3 is the general solution to the homoge-
neous equation (68) for I = 3, showing that āint

3 is a nontriv-
ial object from H(γ ) in pure ghost number three.

At this point we decompose āint
3 in a manner similar to

(A.5)

āint
3 = âint

3 + ǎint
3 , (B.4)

where âint
3 is the solution to (68) for I = 3 that ensures the

consistency of aint
3 in antighost number two, namely the ex-

istence of aint
2 as solution to (67) for i = 3 with respect to

the terms from aint
3 containing the functions of type U or the

constants q1 or q2, while ǎint
3 is the solution to (68) for I = 3

which is independently consistent in antighost number two

δǎint
3 = −γ č2 + ∂μm̌

μ
2 . (B.5)

Based on definitions (35)–(52) and taking into account de-
composition (B.4), we get by direct computation

δaint
3 = δ

[
âint

3 − q2

6
η̃∗λσ σμνD̃μαD̃αβD̃βνB

∗
λσ

−
(

(Ũ5)
μναB∗

μν

+ 1

3
(Ũ5)

μνραη∗
μνρ + 1

12
(Ũ5)

μνρλαη∗
μνρλ

)
D̃αβSβ

+ 1

2
σαβDμνρD̃ναD̃ρβ

(
(Ũ9)

μλσ B∗
λσ

− 1

3
(Ũ9)

μλσγ η∗
λσγ + 1

12
(Ũ9)

μλσγ δη∗
λσγ δ

)]

+ γ c2 + ∂λj
λ
2 + χ2, (B.6)

where

c2 = −č2 + q1

12
η̃∗μν

(
Sρtμν|ρ − 3

2
σρλCμρ Cνλ

)

+ q2

4
η̃∗λσ σμνD̃μα

(
D̃αβVλ + 1

2
F̃

αβ
|λη

)
F̃βν|σ

+ 1

2
(Ũ5)

μνρ

[
Vμ

(
F̃νλ|ρSλ − D̃νλCλ

ρ

)

+ 1

2
η

(
F̃μλ|ν C λ

ρ + 1

3
D̃ α

μ tνρ|α
)]

+ 1

2

(
(Ũ5)

μνλσ B∗
μν + 1

3
(Ũ5)

μνρλσ η∗
μνρ

)

× (
F̃λα|σ Sα − D̃λα Cα

σ

)

+ 1

2
(Ũ6)

μνρ(AμνCρ + Sμφνρ)

− 1

10
(Ũ7)

μνρ

(
Aμν G̃ρ + 1

4
SμK̃νρ

)

+ 1

8
(Ũ8)

μεπεμνρλσ D̃να
(
D̃ρβF̃

λγ
|ε

+ 2F̃
ρβ

|εD̃
λγ

)
F̃ σδ|πσα(γ σδ)β

− 1

8
(Ũ9)

μλσ σαβ

[
Dμνρ

(
4D̃ναF̃

ρβ
|σ Vλ + F̃ να|λF̃

ρβ
|σ η

)

+ 2Fμνρ|σ D̃να
(
D̃ρβVλ + F̃

ρβ
|λη

)]
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− 1

4
(Ũ9)

μλσγ σαβ

(
2DμνρF̃ να|γ

− Fμνρ|γ D̃να
)
D̃ρβB∗

λσ

+ 1

12
(Ũ9)

μλσγ δσαβ

(
2DμνρF̃ να|δ

− Fμνρ|δD̃να
)
D̃ρβη∗

λσγ , (B.7)

χ2 = q1

6
η̃∗μνSρDμνρ

+ 1

6
(Ũ5)

μνρη
(
D̃α

μDνρα − 3R̃μλ|νρSλ
)

+ q2

6
σμνD̃μαD̃αβ

[(
∂σ B̃∗λρσ

)
D̃βνB

∗
λρ

+ 3

2
η̃∗λρR̃βν|λρη

]

+ 1

6
(Ũ6)

μνρDμνρC + 1

6
(Ũ7)

μνρDμνρ G̃

− 1

2
(Ũ8)

μεπεμνρλσ σα(γ σδ)βD̃ναD̃ρβD̃λγ R̃σδ |επ

+ 1

4
(Ũ9)

μλσ σαβ

(
2DμνρR̃να |λσ

− Rμνρ|λσ D̃να
)
D̃ρβη, (B.8)

and j
μ
2 are some local currents. Reprising an argument sim-

ilar to that employed in Appendix A between (A.10) and
(A.13), we find that the existence of aint

2 as solution to (67)
for i = 3 finally implies that χ2 expressed by (B.8) must van-
ish. This is further equivalent to the fact that all the functions
of type U must be some real constants and both constants
q1,2 must vanish

U5(ϕ) = u5, U6(ϕ) = u6,
(B.9)

U7(ϕ) = u7,

U8(ϕ) = u8, U9(ϕ) = u9,
(B.10)

q1 = 0 = q2.

Inserting (B.9) and (B.9) in (B.2), we conclude that we can
safely take

aint
4 = 0 (B.11)

in (B.1).

Appendix C: No-go result for I = 3 in aint

We have seen in the previous two Appendixes A and B
that we can always take (A.13) and (B.11) in (A.1). Con-
sequently, the first-order deformation of the solution to the
master equation in the interacting case stops at antighost
number three

aint = aint
0 + aint

1 + aint
2 + aint

3 , (C.1)

where the components on the right-hand side of (C.1) are
subject to (68) and (66)–(67) for I = 3.

The piece aint
3 as solution to (68) for I = 3 has the general

form expressed by (75) for I = 3, with α3 from H inv
3 (δ|d).

Looking at formula (76) and also at relation (81) in antighost
number three and requiring that aint

3 mixes BRST generators
from the BF and (2,1) sectors, we find that the most general
solution to (68) for I = 3 reads3

aint
3 = η̃∗μ

(
q3ηSμ + q4S

νD̃μν

− 1

2
q5σαβDμνρD̃ναD̃ρβ

)
+ q6S

∗μηSμ

+ 1

6
σμν

(
q7C

∗ + q8 G̃∗)D̃μαD̃αβD̃βν

+ (Ũ10)
μνD̃μν G̃ + (Ũ11)

μνD̃μνC

+ 1

2
(Ũ12)

μνσαβηD̃μαD̃νβ, (C.2)

where any object denoted by q represents an arbitrary, real
constant. Inserting (C.2) in (66) for I = 3 and using defini-
tions (35)–(52), we can write

aint
2 = −q3η̃

∗μν

(
VμSν + 1

2
ηAμν

)

+ q4

2
η̃∗μν

(
CμρD̃ρ

ν + SρF̃ρμ|ν
)

− q5

4
η̃∗μεσαβ

(
2DμνρF̃ να|ε − Fμνρ|εD̃να

)
D̃ρβ

− q6 C∗μν(2VμSν + ηCμν)

+ 1

4
σμν

(
q7C

∗λ − q8 G̃∗λ
)
D̃μαD̃αβF̃βν|λ

− 1

2
(Ũ10)

μνρ

(
F̃μν|ρ G̃ + 2

5
D̃μν G̃ρ

)

+ (Ũ11)
μνρ

(
D̃μνCρ − 1

2
F̃μν|ρC

)

+ 1

2
(Ũ12)

μνρσαβ(VμD̃να

+ ηF̃αμ|ν)D̃ρβ + āint
2 . (C.3)

The component āint
2 represents the solution to the homoge-

neous equation in antighost number two (68) for I = 2, so
āint

2 is a nontrivial element from H(γ ) of pure ghost number
two and antighost number two. It is useful to decompose āint

2
as a sum between two terms

āint
2 = âint

2 + ǎint
2 , (C.4)

3In principle, one can add to aint
3 the term (M1)μνρ D̃μνSρ , where

(M1)μνρ reads as in (84), with W (ϕ) → M1(ϕ). It is possible to show
that such a term outputs only trivial deformations.
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with âint
2 the solution to (68) for I = 2 that ensures the con-

sistency of aint
2 in antighost number one, namely the exis-

tence of aint
1 as solution to (67) for i = 2 with respect to

the terms from aint
2 containing the functions of type U or

the constants denoted by q , and ǎint
2 the solution to (68) for

I = 2 that is independently consistent in antighost number
one

δǎint
2 = −γ č1 + ∂μm̌

μ
1 . (C.5)

Using definitions (35)–(49) and decomposition (C.4), by
direct computation we obtain that

δaint
2 = δ

[
âint

2 − 1

2

(
(Ũ12)

μνλσ B∗
μν

+ 1

3
(Ũ12)

μνρλσ η∗
μνρ

)
σαβD̃λαD̃σβ

]

+ γ c1 + ∂λj
λ
1 + χ1, (C.6)

where we used the notations

c1 = −č1 − 1

2
B̃∗μνρ

[
q3VμAνρ

− q4

6
σαβ(3CμαF̃νβ|ρ + tμν|αD̃ρβ)

+ q5

4
σλσ

(
DμαβF̃ αλ|ν − 2Fμαβ|νD̃αλ

)
F̃

βσ
|ρ

]

+ q6t
∗μν|ρ(6VμCνρ − ηtμν|ρ)

+ 1

2
(Ũ11)

μνρλ(F̃μν|ρCλ + D̃μνφρλ)

− 1

4
σμν

(
q7φ

∗λρ − q8

2
K̃∗λρ

)
D̃μαF̃

αβ
|λF̃βν|ρ

− 1

10
(Ũ10)

μνρλ

(
F̃μν|ρ G̃λ + 1

4
D̃μνK̃ρλ

)

+ 1

2
(Ũ12)

μνρλσαβ

(
VμD̃ναF̃ρβ|λ − 1

4
ηF̃μα|νF̃ρβ|λ

)

+ 1

2
(Ũ12)

μνρλσ σαβB∗
μνD̃σαF̃ρβ|λ, (C.7)

χ1 = 1

6
B̃∗μνρ

[
q3(ηDμνρ + 3Sρ∂[μVν])

− q4σ
αβ(DμναD̃ρβ + 3R̃μα|νρSβ)

+ 3q5

2
σλσ

(
Rμαβ|νρD̃αλ − 2DμαβR̃αλ |νρ

)
D̃βσ

]

− 6q6t
∗μν|ρ(∂[μVν])Sρ

+ 1

2
σμν

(
q7φ

∗ρλ − q8

2
K̃∗ρλ

)
D̃μαD̃αβR̃βν|ρλ

− 1

2
(Ũ10)

μνρλR̃μν|ρλG̃

− 1

2
(Ũ11)

μνρλR̃μν|ρλC

− 1

2
(Ũ12)

μνρλσαβηD̃μαR̃νβ|ρλ, (C.8)

and j
μ
1 are some local currents. It is easy to see that χ1 given

in (C.8) is a nontrivial object from H (γ ) in pure ghost num-
ber two, which obviously does not reduce to a full diver-
gence. Then, since (C.6) requires that it is γ -exact modulo
d , it must vanish, which further implies that all the functions
of type U(ϕ) are some real constants and all the constants
denoted by q vanish

U10(ϕ) = u10, U11(ϕ) = u11,

U12(ϕ) = u12, (C.9)

q3 = q4 = q5 = q6 = q7 = q8 = 0.

Inserting conditions (C.9) and (C.10) into (C.2), we con-
clude that we conclude that we can safely take

aint
3 = 0 (C.10)

in (C.1).

Appendix D: No-go result for I = 0 in aint

The solution to the ‘homogeneous’ equation (119) can be
represented as

āint
0 = ā′int

0 + ā′′int
0 , (D.1)

where

γ ā′int
0 = 0, (D.2)

γ ā′′int
0 = ∂μm̄

μ
0 (D.3)

and m̄
μ
0 is a nonvanishing, local current.

According to the general result expressed by (75) in both
antighost and pure ghost numbers equal to zero, (D.2) im-
plies

ā′int
0 = ā′int

0 ([FĀ]), (D.4)

where FĀ are listed in (75). Solution (D.4) is assumed
to provide a cross-coupling Lagrangian. Therefore, since
Rμνρ|αβ is the most general gauge-invariant quantity de-
pending on the field tμν|α , it follows that each interaction
vertex from ā′int

0 is required to be at least linear in Rμνρ|αβ

and to depend at least on a BF field. But Rμνρ|αβ con-
tains two spacetime derivatives, so the emerging interacting
field equations would exhibit at least two spacetime deriva-
tives acting on the BF field(s) from the interaction vertices.
Nevertheless, this contradicts the general assumption on the
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preservation of the differential order of each field equation
with respect to the free theory (see assumption (ii) from the
beginning of Sect. 4), so we must set

ā′int
0 = 0. (D.5)

Next, we solve (D.3). In view of this, we decompose ā′′int
0

with respect to the number of derivatives acting on the fields
as

ā′′int
0 = (0)

π + (1)
π + (2)

π , (D.6)

where each
(i)
π contains precisely i spacetime derivatives. Of

course, each
(i)
π is required to mix the BF and (2,1) field

sectors in order to produce cross-interactions. In agreement
with (D.6), equation (D.3) is equivalent to

γ
(0)
π = ∂μ

(0)
m

μ

0 , (D.7)

γ
(1)
π = ∂μ

(1)
m

μ

0 , (D.8)

γ
(2)
π = ∂μ

(2)
m

μ

0 . (D.9)

Using definitions (45)–(47) and an integration by parts it is
possible to show that

γ
(0)
π = ∂μ

(0)
m

μ

0 −
(

∂μ

∂
(0)
π

∂tμ(ν|α)

)
Sνα

+
(

2∂μ

∂
(0)
π

∂tαβ|μ
− ∂μ

∂
(0)
π

∂tμ[α|β]

)
Aαβ

+
(

∂[μ
∂

(0)
π

∂Hν]

)
Cμν −

(
∂μ

∂
(0)
π

∂Vμ

)
η

+
(

∂[μ
∂

(0)
π

∂Bνρ]

)
ημνρ

− 2

(
∂μ

∂
(0)
π

∂φμν

)
Cν +

(
∂[μ

∂
(0)
π

∂Kνρλ]

)
Gμνρλ. (D.10)

From (D.10) we observe that
(0)
π is solution to (D.7) if

and only if the following conditions are satisfied simulta-
neously

∂μ

∂
(0)
π

∂tμ(ν|α)

= 0, ∂μ

∂
(0)
π

∂tαβ|μ
= 0,

(D.11)

∂[μ
∂

(0)
π

∂Hν] = 0,

∂μ

∂
(0)
π

∂Vμ

= 0, ∂[μ
∂

(0)
π

∂Bνρ] = 0,

(D.12)

∂μ

∂
(0)
π

∂φμν

= 0, ∂[μ
∂

(0)
π

∂Kνρλ] = 0.

Because
(0)
π is derivative-free, the solutions to (D.11)–(D.12)

read

∂
(0)
π

∂tμν|α
= τμν|α,

∂
(0)
π

∂Hμ
= hμ,

(D.13)
∂

(0)
π

∂Vμ

= vμ,

∂
(0)
π

∂Bμν
= bμν,

∂
(0)
π

∂φμν

= fμν,

(D.14)
∂

(0)
π

∂Kμνρ
= kμνρ,

where τμν|α , hμ, vμ, bμν , fμν , and kμνρ are some real,
constant tensors. In addition, τμν|α display the same mixed
symmetry properties like the tensor field tμν|α and bμν , fμν ,
and kμνρ are completely antisymmetric. Because there are
no such constant tensors in D = 5, we conclude that (D.11)–
(D.12) possess only the trivial solution, which further im-
plies that

(0)
π = 0. (D.15)

Related to (D.8), we use again definitions (45)–(47) and
integrate twice by parts, obtaining

γ
(1)
π = ∂μ

(1)
m

μ

0 −
(

∂μ

δ
(1)
π

δtμ(α|β)

)
Sαβ

−
(

∂μ

δ
(1)
π

δtμ[α|β]
− 2∂μ

δ
(1)
π

δtαβ|μ

)
Aαβ

+
(

∂[μ
δ
(1)
π

δHν]

)
Cμν −

(
∂μ

δ
(1)
π

δVμ

)
η

+
(

∂[μ
δ
(1)
π

δBνρ]

)
ημνρ

− 2

(
∂μ

δ
(1)
π

δφμν

)
Cν +

(
∂[μ

δ
(1)
π

δKνρλ]

)
Gμνρλ. (D.16)

Inspecting (D.16), we observe that
(1)
π satisfies equation

(D.8) if and only if the following relations take place simul-
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taneously

∂μ

δ
(1)
π

δtμ(α|β)

= 0, ∂μ

δ
(1)
π

δtαβ|μ
= 0,

(D.17)

∂[μ
δ
(1)
π

δHν] = 0,

∂μ

δ
(1)
π

δVμ

= 0, ∂[μ
δ
(1)
π

δBνρ] = 0,

(D.18)

∂μ

δ
(1)
π

δφμν

= 0, ∂[μ
δ
(1)
π

δKνρλ] = 0.

The solutions to (D.17)–(D.18) are expressed by

δ
(1)
π

δtμ(α|β)

= ∂νs
μναβ,

δ
(1)
π

δtαβ|μ
= ∂ντ

αβμν, (D.19)

δ
(1)
π

δHμ
= ∂μh,

δ
(1)
π

δVμ

= ∂νv
μν,

(D.20)
δ
(1)
π

δBμν
= ∂[μbν],

δ
(1)
π

δφμν

= ∂ρf μνρ,

(D.21)
δ
(1)
π

δKμνρ
= ∂[μkνρ],

where the quantities sμναβ , ταβμν , h, vμν , bμ, f μνρ , and
kμν are some tensors depending at most on the undifferenti-
ated fields Φα0 from (2). In addition, they display the sym-
metry/antisymmetry properties

sμναβ = −sνμαβ = sμνβα, (D.22)

ταβμν = −τβαμν = −ταβνμ, (D.23)

τ [αβμ]ν = 0, (D.24)

and vμν , f μνρ , and kμν are completely antisymmetric. Be-
cause both tensors sμναβ and ταβμν are derivative-free, their
are related through

sμναβ = τμ(αβ)ν . (D.25)

Using successively properties (D.22)–(D.24) and formula
(D.25), it can be shown that ταβμν is completely antisym-
metric. This last property together with (D.24) leads to

ταβμν = 0,

which replaced in the latter equality from (D.19) produces

δ
(1)
π

δtαβ|μ
= 0.

This means that the entire dependence of
(1)
π on tαβ|μ is triv-

ial (reduces to a full divergence), and therefore
(1)
π can at

most describe self-interactions in the BF sector. Since there
is no nontrivial solution to (D.8) that mixes the BF and (2,1)

field sectors, we can safely take

(1)
π = 0. (D.26)

In the end of this section we analyze equation (D.9). Tak-
ing one more time into account definitions (45)–(47), it is

easy to see that (D.9) implies that the EL derivatives of
(2)
π

are subject to the equations

∂μ

δ
(2)
π

δtμ(α|β)

= 0, ∂μ

δ
(2)
π

δtαβ|μ
= 0, (D.27)

∂[μ
δ
(2)
π

δHν] = 0, ∂μ

δ
(2)
π

δVμ

= 0,

(D.28)

∂[μ
δ
(2)
π

δBνρ] = 0,

∂μ

δ
(2)
π

δφμν

= 0, ∂[μ
δ
(2)
π

δKνρλ] = 0. (D.29)

Because
(2)
π (and also its EL derivatives) contains two space-

time derivatives, the solution to both equations from (D.27)
is of the type

δ
(2)
π

δtμν|α
= ∂ρ∂β τ̄μνρ|αβ, (D.30)

where τ̄ μνρ|αβ depends only on the undifferentiated fields
Φα0 and exhibits the mixed symmetry (3,2). This means
that τ̄ μνρ|αβ is simultaneously antisymmetric in its first three
and respectively last two indices and satisfies the identity
τ̄ [μνρ|α]β = 0. The solutions to the remaining equations,
(D.28) and (D.32), can be represented as

δ
(2)
π

δHμ
= ∂μh̄,

δ
(2)
π

δVμ

= ∂νv̄
μν,

(D.31)
δ
(2)
π

δBμν
= ∂[μb̄ν],

δ
(2)
π

δφμν

= ∂ρf̄ μνρ,
δ
(2)
π

δKμνρ
= ∂[μk̄νρ], (D.32)

where the functions v̄μν , f̄ μνρ , and k̄μν are completely an-
tisymmetric and contain a single spacetime derivative.

Let N be a derivation in the algebra of the fields tμν|α ,
Hμ, Vμ, Bμν , φμν , Kμνρ , and of their derivatives, which
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counts the powers of these fields and of their derivatives

N =
∑

n≥0

(
(∂μ1···μntμν|α)

∂

∂(∂μ1···μntμν|α)

+ (
∂μ1···μnH

μ
) ∂

∂(∂μ1···μnH
μ)

+ (∂μ1···μnVμ)
∂

∂(∂μ1···μnVμ)

+ (
∂μ1···μnB

μν
) ∂

∂(∂μ1···μnB
μν)

+ (∂μ1···μnφμν)
∂

∂(∂μ1···μnφμν)

+ (
∂μ1···μnK

μνρ
) ∂

∂(∂μ1···μnK
μνρ)

)
. (D.33)

We emphasize that N does not ‘see’ either the scalar field ϕ

or its spacetime derivatives. It is easy to check that for every
nonintegrated density Ψ we have

NΨ = δΨ

δtμν|α
tμν|α + δΨ

δHμ
Hμ

+ δΨ

δVμ

Vμ + δΨ

δBμν
Bμν

+ δΨ

δφμν

φμν + δΨ

δKμνρ
Kμνρ + ∂μsμ. (D.34)

If Ψ (n) is a homogeneous polynomial of degree n in the
fields tμν|α , Hμ, Vμ, Bμν , φμν , Kμνρ and their derivatives
(such a polynomial may depend also on ϕ and its space-
time derivatives, but the homogeneity does not take them
into consideration since Ψ is allowed to be a series in ϕ),
then

NΨ (n) = nΨ (n).

Based on results (D.30)–(D.32), we can write

N
(2)
π = −1

3
τ̄ μνρ|αβRμνρ|αβ − h̄∂μHμ

+ 1

2
v̄μν∂[μVν] + 2b̄μ∂νB

μν

− 1

3
f̄ μνρ∂[μφνρ] − 3k̄μν∂ρKμνρ + ∂μmμ. (D.35)

We decompose
(2)
π along the degree n as

(2)
π =

∑

n≥2

(2)
π

(n)

, (D.36)

where N
(2)
π

(n)

= n
(2)
π

(n)

(n ≥ 2 in (D.36) because
(2)
π , and

hence every
(2)
π

(n)

, is assumed to describe cross-interactions

between the BF model and the tensor field with the mixed
symmetry (2,1)), and find that

N
(2)
π =

∑

n≥2

n
(2)
π

(n)

. (D.37)

Comparing (D.37) with (D.35), it follows that decomposi-
tion (D.36) induces a similar one with respect to each func-
tion τ̄ μνρ|αβ , h̄, v̄μν , b̄μ, f̄ μνρ , and k̄μν

τ̄μνρ|αβ =
∑

n≥2

τ̄
μνρ|αβ

(n−1) , h̄ =
∑

n≥2

h̄(n−1),

(D.38)
v̄μν =

∑

n≥2

v̄
μν

(n−1)
,

b̄μ =
∑

n≥2

b̄
μ

(n−1), f̄ μνρ =
∑

n≥2

f̄
μνρ

(n−1),

(D.39)
k̄μν =

∑

n≥2

k̄
μν

(n−1).

Inserting (D.38) and (D.39) in (D.35) and comparing the re-
sulting expression with (D.37), we get

(2)
π

(n)

= − 1

3n
τ̄

μνρ|αβ

(n−1) Rμνρ|αβ − 1

n
h̄(n−1)∂μHμ

+ 1

2n
v̄

μν

(n−1)∂[μVν] + 2

n
b̄

μ

(n−1)∂
νBμν

− 1

3n
f̄

μνρ

(n−1)∂[μφνρ] − 3

n
k̄
μν

(n−1)∂
ρKμνρ

+ ∂μm
μ

(n). (D.40)

Replacing the last result, (D.40), into (D.36), we further ob-
tain

(2)
π = −1

3
τ̂ μνρ|αβRμνρ|αβ − ĥ∂μHμ

+ 1

2
v̂μν∂[μVν] + 2b̂μ∂νB

μν

− 1

3
f̂ μνρ∂[μφνρ] − 3k̂μν∂ρKμνρ + ∂μm̂μ, (D.41)

where

τ̂ μνρ|αβ =
∑

n≥2

1

n
τ̄

μνρ|αβ

(n−1) , ĥ =
∑

n≥2

1

n
h̄(n−1),

(D.42)
v̂μν =

∑

n≥2

1

n
v̄

μν

(n−1)
,

b̂μ =
∑

n≥2

1

n
b̄

μ

(n−1), f̂ μνρ =
∑

n≥2

1

n
f̄

μνρ

(n−1),

(D.43)
k̂μν =

∑

n≥2

1

n
k̄
μν

(n−1).
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So far, we showed that the solution to (D.9) can be put in
the form (D.41). By means of definitions (36)–(37), we can
bring (D.41) to the expression

(2)
π = −1

3
τ̂ μνρ|αβRμνρ|αβ + ∂μm̂μ

+ δ
(−ϕ∗ĥ − B∗

μνv̂
μν − 2V ∗

μb̂μ

+ K∗
μνρf̂ μνρ − 3φ∗μνk̂μν

)
. (D.44)

The δ-exact modulo d terms in the right-hand side of (D.44)
produce purely trivial interactions, which can be elimi-
nated via field redefinitions. This is due to the isomor-
phism Hi (s|d) � Hi (γ |d,H0 (δ)) in all positive values of
the ghost number and respectively of the pure ghost num-
ber [42], which at i = 0 allows one to state that any solution
of (D.9) that is δ-exact modulo d is in fact a trivial cocycle
from H 0 (s|d). In conclusion, the only nontrivial solution to
(D.9) can be written as

(2)
π = −1

3
τ̂ μνρ|αβRμνρ|αβ, (D.45)

where τ̂ μνρ|αβ displays the mixed symmetry (3,2), is
derivative-free, and is required to depend at least on one field
from the BF sector. But Rμνρ|αβ already contains two space-

time derivatives, so such a
(2)
π disagrees with the hypothesis

on the differential order of the interacting field equations
(see also the discussion following formula (D.4)), which
means that we must set

(2)
π = 0. (D.46)

Substituting results (D.15), (D.26), and (D.46) into de-
composition (D.6), we obtain

ā′′int
0 = 0, (D.47)

which combined with (D.5) proves that indeed there is no
nontrivial solution to the ‘homogeneous’ equation (119) that
complies with all the working hypotheses

āint
0 = 0. (D.48)

Appendix E: Notations from Sect. 6

In this Appendix we list the concrete form of the various
notations made in Sect. 6.

The polynomials denoted by X̄
(i)
p that enter Δ̄int given in

(137) read

X̄
(1)
0 = 6S∗ηC + 12t∗μ(VμC + ηCμ)

+ 6
(
2B∗

μνC + V[μCν] − φμνη
)
Fμν

− 2
(
2η∗

μνρC + 2B∗[μνCρ]

− 3K∗
μνρη − φ[μνVρ]

)
D̃λσ εμνρλσ , (E.1)

X̄
(1)
1 = [(−2C∗

μνρη − 2C∗[μνVρ] − 4H ∗[μB∗
νρ]

)
C

+ (−2H ∗[μVνCρ] + 2H ∗[μφνρ]η
)

+ 2C∗[μνCρ]η
]
D̃λσ εμνρλσ

− 12H ∗
μt∗μηC + 6

(
H ∗[μVν]C

+ 2H ∗
μηCν + C∗

μνηC
)
Fμν, (E.2)

X̄
(1)
2 = [(−2H ∗[μC∗

νρ]η − 2H ∗[μH ∗
ν Vρ]

)
C

+ 2H ∗[μH ∗
ν Cρ]η

]
D̃λσ εμνρλσ

+ 6H ∗
μH ∗

ν ηCFμν, (E.3)

X̄
(1)
3 = 4H ∗

μH ∗
ν H ∗

ρ ηCDμνρ, (E.4)

X̄
(2)
0 = −12 · 5!(S∗η + 2t∗μVμ + 2B∗

μνF
μν

)
G̃

− 4 · 5!η∗
μνρD̃λσ Gμνρλσ

+ 4! · 4!t∗μηG̃μ − 4! · 4!B∗
μνD̃ρλGμνρλ

+ 6 · 4!(φ∗μνη − KμνρVρ

)
D̃μν

− 3 · 4!(K̃μνη − 4V[μG̃ν])Fμν, (E.5)

X̄
(2)
1 = −4 · 5!(C∗

μνρη + C∗[μνVρ] + 2H ∗[μB∗
νρ]

)
D̃λσ Gμνρλσ

− 12 · 5!(C∗
μνF

μνη − 2H ∗
μt∗μη

+ H ∗[μVν]Fμν
)

G̃ − 12 · 4!H ∗[μG̃ν]ηFμν

− 12 · 4!(C∗
μνη + H ∗[μVν]

)
D̃ρλGμνρλ

− 6 · 4!H ∗
μKμνρηD̃νρ, (E.6)

X̄
(2)
2 = −4 · 5!(H ∗[μC∗

νρ]η + H ∗[μH ∗
ν Vρ]

)
D̃λσ Gμνρλσ

− 12 · 4!H ∗
μH ∗

ν ηD̃ρλGμνρλ

− 12 · 5!H ∗
μH ∗

ν ηFμν G̃, (E.7)

X̄
(2)
3 = −4 · 5!H ∗

μH ∗
ν H ∗

ρ ηD̃λσ Gμνρλσ , (E.8)

X̄
(3)
0 = −6 · 5!S∗η̃ + 12 · 4!t∗μη̃μ

+ 4!BμνD̃μν − 36η̃μνF
μν, (E.9)

X̄
(3)
1 = 2 · 5!C∗

μνρD̃λσ ημνρλσ

+ 6 · 5!(2H ∗
μt∗μ − C∗

μνF
μν

)
η̃

+ 6 · 4!C∗
μνD̃ρλη

μνρλ + 3 · 4!H ∗
μD̃νρημνρ

+ 6 · 4!H ∗[μη̃ν]Fμν, (E.10)

X̄
(3)
2 = 2 · 5!H ∗[μC∗

νρ]D̃λσ ημνρλσ

+ 6 · 4!H ∗
μH ∗

ν

(
D̃ρλη

μνρλ − 5Fμνη̃
)
, (E.11)
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X̄
(3)
3 = 2 · 5!H ∗

μH ∗
ν H ∗

ρ D̃λσ ημνρλσ . (E.12)

The functions appearing in (146) and denoted by U
(i)
p are

of the form

U
(1)
0 = −9

(
2k1φ

μν − k2

10
K̃μν

)

× (
2B∗

μνC + V[μCν] − φμνη
)
, (E.13)

U
(1)
1 = −9

(
k1φ

μν − k2

20
K̃μν

)

× [
C∗

μνηC − H ∗
μ (VνC + ηCν)

]
, (E.14)

U
(1)
2 = −9

(
k1φ

μν − k2

20
K̃μν

)
H ∗

μH ∗
ν ηC, (E.15)

U
(2)
0 = 108

(
k1φ

μν − k2

20
K̃μν

)

× (
40B∗

μν G̃ + ηK̃μν − 8VμG̃ν

)
, (E.16)

U
(2)
1 = 18εαβγ δε

(
C∗

μνη + H ∗[μVν]
)

×
(

k1φ
μν − k2

20
K̃μν

)
Gαβγ δε

− 36εραβγ δH
∗
μ

(
k1φ

μρ − k2

20
K̃μρ

)
ηGαβγ δ, (E.17)

U
(2)
2 = 18εαβγ δε

(
k1φ

μν − k2

20
K̃μν

)

× H ∗
μH ∗

ν ηGαβγ δε, (E.18)

U
(3)
0 = 9ενραβγ

(
k1φ

νρ − k2

20
K̃νρ

)
ηαβγ , (E.19)

U
(3)
1 = 9

4
εαβγ δεC

∗
μν

(
k1φ

μν − k2

20
K̃μν

)
ηαβγ δε

− 18ερβγ δεH
∗
μ

(
k1φ

μρ − k2

20
K̃μρ

)
ηβγ δε, (E.20)

U
(3)
2 = 9εαβγ δεH

∗
μH ∗

ν

(
k1φ

μν − k2

20
K̃μν

)
ηαβγ δε. (E.21)

Appendix F: Deformed gauge structure

If we denote by Ω
α1
1 and Ω

α1
2 two independent sets of gauge

parameters,

Ω
α1
1 ≡ (

ε(1)μν, ε(1), ε(1)μνρ, ξ (1)
μ , ξ (1)μνρλ, θ(1)

μν ,χ(1)
μν

)
, (F.1)

Ω
α1
2 ≡ (

ε(2)μν, ε(2), ε(2)μνρ, ξ (2)
μ , ξ (2)μνρλ, θ(2)

μν ,χ(2)
μν

)
, (F.2)

then the concrete form of the commutators among the de-
formed gauge transformations of the fields associated with
(F.1) and (F.2) (and generically written as in (162)) read

[δ̄Ω1, δ̄Ω2 ]ϕ = 0, (F.3)

[δ̄Ω1, δ̄Ω2 ]Hμ = δ̄ΩHμ − 2
δSL

δHν

dεμν

dϕ
− 3

δSL

δBνρ

dεμνρ

dϕ

+ 2
δSL

δφμν

dξν

dϕ
− 4

δSL

δKνρλ

dξμνρλ

dϕ
, (F.4)

[δ̄Ω1, δ̄Ω2 ]Vμ = δ̄ΩVμ, (F.5)

[δ̄Ω1, δ̄Ω2 ]Bμν = δ̄ΩBμν + 3
δSL

δHρ

dεμνρ

dϕ
, (F.6)

[δ̄Ω1, δ̄Ω2 ]φμν = δ̄Ωφμν − δSL

δH [μ
dξν]
dϕ

, (F.7)

[δ̄Ω1, δ̄Ω2 ]Kμνρ = δ̄ΩKμνρ − 4
δSL

δHλ

dξμνρλ

dϕ
, (F.8)

[δ̄Ω1, δ̄Ω2 ]tμν|α = 0. (F.9)

The gauge parameters from the right-hand side of the above
formulas are defined through

Ωα1 = (
εμν, ε = 0, εμνρ, ξμ, ξμνρλ,

θμν = 0, χμν = 0
)
, (F.10)

where

εμν = λ

{
−dW1

dϕ

(
ε(1)ε(2)μν − ε(2)ε(1)μν

)

+ 6
dW3

dϕ

[
φρλ

(
ε(1)ξ (2)μνρλ − ε(2)ξ (1)μνρλ

)

+ 1

2
Kμνρ

(
ε(1)ξ (2)

ρ − ε(2)ξ (1)
ρ

)

− 2Vρ

(
ξ

(1)
λ ξ (2)μνρλ − ξ

(2)
λ ξ (1)μνρλ

)]

− 3
dW2

dϕ

(
ξ (1)
ρ ε(2)μνρ − ξ (2)

ρ ε(1)μνρ
)

+ 3
dW6

dϕ
εραβγ δ

(
ε(1)μνρξ (2)αβγ δ − ε(2)μνρξ (1)αβγ δ

)

+ 6
dW4

dϕ

[
εραβγ δK

μνρ
(
ε(1)ξ (2)αβγ δ − ε(2)ξ (1)αβγ δ

)

+ 1

6
εμνρλσ ελαβγ δεσα′β ′γ ′δ′Vρξ(1)αβγ δξ (2)α′β ′γ ′δ′

]

− 1

2
εμνρλσ dW5

dϕ

[
φρλ

(
ε(1)ξ (2)

σ − ε(2)ξ (1)
σ

)

− 2Vρξ
(1)
λ ξ (2)

σ

]}
, (F.11)

εμνρ = −8λ

[
W3

(
ξ

(1)
λ ξ (2)μνρλ − ξ

(2)
λ ξ (1)μνρλ

)

− 1

12
εμνρλσ

(
W4ελαβγ δεσα′β ′γ ′δ′ξ (1)αβγ δξ (2)α′β ′γ ′δ′
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+ W5ξ
(1)
λ ξ (2)

σ

)]
, (F.12)

ξμ = −3λ
[
W3

(
ε(1)ξ (2)

μ − ε(2)ξ (1)
μ

)

+ 2W4εμνρλσ

(
ε(1)ξ (2)νρλσ − ε(2)ξ (1)νρλσ

)]
, (F.13)

ξμνρλ = 3λ

[
W3

(
ε(1)ξ (2)μνρλ − ε(2)ξ (1)μνρλ

)

− 1

12
W4ε

μνρλσ
(
ε(1)ξ (2)

σ − ε(2)ξ (1)
σ

)]
. (F.14)

In addition, we made the notations

θ(i) = σαβθ(i)αβ, i = 1,2. (F.15)

Related to the first-order reducibility, the transformations
(163) are given by

εμν(Ω̄) = −3Dρε̄μνρ − λ
dW2

dϕ

(
Bμνξ̄ − 6φρλε̄

μνρλ
)

+ 3λ
dW3

dϕ
Vρ

(
Kμνρξ̄ − 10φλσ ξ̄μνρλσ

)

− 6λεαβγ δε

dW4

dϕ
KμνρVρξ̄αβγ δε

− λ

2
εμνρλσ dW5

dϕ
Vρφλσ ξ̄

+ λ
dW6

dϕ

(
εαβγ δεB

μνξ̄αβγ δε

+ 3Kμνρεραβγ δε̄
αβγ δ

)
, (F.16)

ε(Ω̄) = 2λ
(
W2ξ̄ − εαβγ δεW6ξ̄

αβγ δε
)
, (F.17)

εμνρ(Ω̄) = 4∂λε̄
μνρλ + 2λW1ε̄

μνρ − 20λW3φλσ ξ̄μνρλσ

+ 2λKμνρ
(
W3ξ̄ − 2εαβγ δεW4ξ̄

αβγ δε
)

− λ

3
εμνρλσ W5φλσ ξ̄ , (F.18)

ξμ(Ω̄) = D(−)
μ ξ̄ + 6λεαβγ δεW4Vμξ̄αβγ δε

− 3λεμνρλσ W6ε̄
νρλσ , (F.19)

ξμνρλ(Ω̄) = −5D(+)
σ ξ̄μνρλσ + 3λW2ε̄

μνρλ

− λ

4
εμνρλσ W5Vσ ξ̄ , (F.20)

θμν(Ω̄) = 3∂(μθ̄ν)

+ λσμν

(
k1ξ̄ + k2

5! εαβγ δεξ̄
αβγ δε

)
, (F.21)

χμν(Ω̄) = ∂[μθ̄ν], (F.22)

while the first-order reducibility relations (164) read

δ̄Ω(Ω̄)ϕ = 0, (F.23)

δ̄Ω(Ω̄)H
μ = λ

δSL

δHν

{
6Vρ

[
d2W1

dϕ2
ε̄μνρ

− d2W3

dϕ2

(
10φλσ ξ̄μνρλσ − Kμνρξ̄

)

− 2εαβγ δε

d2W4

dϕ2
Kμνρξ̄αβγ δε

− 1

6
εμνρλσ d2W5

dϕ2
φλσ ξ̄

]

+ 2
d2W6

dϕ2

(
3εραβγ δK

μνρε̄αβγ δ

+ εαβγ δεB
μνξ̄αβγ δε

)

+ 2
d2W2

dϕ2

(
6φρλε̄

μνρλ − Bμνξ̄
)}

+ 6λ
δSL

δBνρ

[
dW1

dϕ
ε̄μνρ

− dW3

dϕ

(
10φλσ ξ̄μνρλσ − Kμνρξ̄

)

− 2εαβγ δε

dW4

dϕ
Kμνρξ̄αβγ δε

− 1

6
εμνρλσ dW5

dϕ
φλσ ξ̄

]

− 2λ
δSL

δVμ

(
dW2

dϕ
ξ̄ − εαβγ δε

dW6

dϕ
ξ̄αβγ δε

)

+ λ
δSL

δKνρλ

[
−Vσ

(
60

dW3

dϕ
ξ̄μνρλσ

+ εμνρλσ dW5

dϕ
ξ̄

)

+ 12
dW2

dϕ
ε̄μνρλ

]

+ 6λ
δSL

δφμν

[
εναβγ δ

dW6

dϕ
ε̄αβγ δ

+ Vν

(
dW3

dϕ
ξ̄ − 2εαβγ δε

dW4

dϕ
ξ̄αβγ δε

)]
, (F.24)

δ̄Ω(Ω̄)Vμ = 2λ
δSL

δHμ

(
dW2

dϕ
ξ̄ − εαβγ δε

dW6

dϕ
ξ̄αβγ δε

)
, (F.25)

δ̄Ω(Ω̄)B
μν = 6λ

δSL

δHρ

[
−dW1

dϕ
ε̄μνρ

+ 10
dW3

dϕ
φλσ ξ̄μνρλσ

− Kμνρ

(
dW3

dϕ
ξ̄ − 2

dW4

dϕ
εαβγ δεξ̄

αβγ δε

)



Eur. Phys. J. C (2009) 63: 491–519 517

+ 1

6
εμνρλσ dW5

dϕ
φλσ ξ̄

]

+ λ
δSL

δKρλσ

(
60W3ξ̄

μνρλσ + εμνρλσ W5ξ̄
)

+ 6λ
δSL

δφμν

(
W3ξ̄ − 2εαβγ δεW4ξ̄

αβγ δε
)
, (F.26)

δ̄Ω(Ω̄)φμν = −3λ
δSL

δH [μ Vν]
(

dW3

dϕ
ξ̄

− 2εαβγ δε

dW4

dϕ
ξ̄αβγ δε

)

− 6λ
δSL

δBμν

(
W3ξ̄ − 2εαβγ δεW4ξ̄

αβγ δε
)

− 3λ
dW6

dϕ

δSL

δH [μ εν]αβγ δε̄
αβγ δ, (F.27)

δ̄Ω(Ω̄)K
μνρ = λ

δSL

δHλ

[
−Vσ

(
60

dW3

dϕ
ξ̄μνρλσ

+ εμνρλσ dW5

dϕ
ξ̄

)

+ 12
dW2

dϕ
ε̄μνρλ

]

− λ
δSL

δBλσ

(
60W3ξ̄

μνρλσ

+ εμνρλσ W5ξ̄
)
, (F.28)

δ̄Ω(Ω̄)tμν|α = 0. (F.29)

Regarding the second-order reducibility, the transforma-
tions (165) take the concrete form

ε̄μνρ(Ω̌) = 4Dλε̌
μνρλ

− λ

(
10

dW2

dϕ
φλσ ε̌μνρλσ

+ εαβγ δε

dW6

dϕ
Kμνρε̌αβγ δε

)
, (F.30)

ε̄μνρλ(Ω̌) = −5∂σ ε̌μνρλσ − 2λW1ε̌
μνρλ,

ξ̄ (Ω̌) = −3λεαβγ δεW6ε̌
αβγ δε, (F.31)

ξ̄ μνρλσ (Ω̌) = −3λW2ε̌
μνρλσ , θ̄μ(Ω̌) = 0, (F.32)

such that the second-order reducibility relations (166) be-
come

εμν
(
Ω̄(Ω̌)

) = 3λ
δSL

δHρ

(
4
d2W1

dϕ2
Vλε̌

μνρλ

+ 10
d2W2

dϕ2
φλσ ε̌μνρλσ

+ εαβγ δε

d2W6

dϕ2
Kμνρε̌αβγ δε

)

+ 12λ
dW1

dϕ

δSL

δBρλ
ε̌μνρλ

+ 30λ
dW2

dϕ

δSL

δKρλσ
ε̌μνρλσ

− 3λεαβγ δε

dW6

dϕ

δSL

δφμν

ε̌αβγ δε, (F.33)

ε
(
Ω̄(Ω̌)

) = 0, (F.34)

εμνρ
(
Ω̄(Ω̌)

) = −8λ
dW1

dϕ

δSL

δHλ
ε̌μνρλ, (F.35)

ξμ

(
Ω̄(Ω̌)

) = −3λεαβγ δε

dW6

dϕ

δSL

δHμ
ε̌αβγ δε, (F.36)

ξμνρλ
(
Ω̄(Ω̌)

) = 15λ
dW2

dϕ

δSL

δHσ
ε̌μνρλσ , (F.37)

θμν

(
Ω̄(Ω̌)

) = 0, χμν

(
Ω̄(Ω̌)

) = 0. (F.38)

Finally, we investigate the third-order reducibility, for
which the transformations (167) can be written as

ε̌μνρλ(Ω̂) = −5Dσ ε̂μνρλσ ,
(F.39)

ε̌μνρλσ (Ω̂) = 2λW1ε̂
μνρλσ , (F.40)

while that for the third-order reducibility relations (168) are
listed below:

ε̄μνρ
(
Ω̌(Ω̂)

) = 20λ

(
δSL

δHλ

d2W1

dϕ2
Vσ (F.41)

+ δSL

δBλσ

dW1

dϕ

)
ε̂μνρλσ ,

ε̄μνρλ
(
Ω̌(Ω̂)

) = −10λ
δSL

δHσ

dW1

dϕ
ε̂μνρλσ, (F.42)

ξ̄
(
Ω̌(Ω̂)

) = 0,

ξ̄μνρλσ
(
Ω̌(Ω̂)

) = 0, (F.43)

θ̄μ

(
Ω̌(Ω̂)

) = 0.
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31. C. Bizdadea, C.C. Ciobîrcă, E.M. Cioroianu, S.O. Saliu, S.C.
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