The central ionizing source of SuWt 2 was modelled using different non-local thermodynamic equilibrium (NLTE; Rauch, 2003) model atmospheres listed in Table 6, as they resulted in the best fit of the nebular emission-line fluxes. Initially, we tested a set of blackbody fluxes with the effective temperature ( ) ranging from to K, the stellar luminosity compared to that of the Sun ( ) ranging from 50-800 and different evolutionary tracks (Blöcker, 1995). A blackbody spectrum provides a rough estimate of the ionizing source required to photoionize the PN SuWt 2. The assumption of a blackbody spectral energy distribution (SED) is not quite correct as indicated by Rauch (2003). The strong differences between a blackbody SED and a stellar atmosphere are mostly noticeable at energies higher than 54 eV (He II ground state). We thus successively used the NLTE Tübingen Model-Atmosphere Fluxes Package4 (TMAF; Rauch, 2003) for hot compact stars. We initially chose the stellar temperature and luminosity (gravity) of the best-fitting blackbody model, and changed them to get the best observed ionization properties of the nebula.
Fig. 9 shows the NTLE model atmosphere fluxes used to reproduce the observed nebular emission-line spectrum by our photoionization models. We first used a hydrogen-rich model atmosphere with an abundance ratio of H:He=8:2 by mass, (cgs), and K (Model 1), corresponding to the final stellar mass of and the zero-age main sequence (ZAMS) mass of , where is the solar mass. However, its post-AGB age ( ) of 7500yr, as shown in Fig. 10 (left-hand panel), is too short to explain the nebula's age. We therefore moved to a hydrogen-deficient model, which includes Wolf-Rayet central stars ([WC]) and the hotter PG 1159 stars. [WC]-type central stars are mostly associated with carbon-rich nebula (Zijlstra et al., 1994). The evolutionary tracks of the VLTP for H-deficient models, as shown in Fig.10 (right-hand panel), imply a surface gravity of for given and . From the high temperature and high surface gravity, we decided to use `typical' PG 1159 model atmosphere fluxes (He:C:N:O=33:50:2:15) with K and (Model 2), corresponding to the post-AGB age of about 5000yr, and . The stellar mass found here is in agreement with the estimate of Exter et al. (2010). Fig.9 compares the two model atmosphere fluxes with a blackbody with K.
Table 6 lists the parameters used for our final simulations in two different NTLE model atmosphere fluxes. The ionization structure of this nebula was best reproduced using these best two models. Each model has different effective temperature, stellar luminosity and abundances (N/H, O/H and Ne/H). The results of our two models are compared in Tables 7-10 to those derived from the observation and empirical analysis.
Ion | ||||||||
Element | I | II | III | IV | V | VI | VII | |
H | 11696 | 12904 | ||||||
11470 | 12623 | |||||||
He | 11628 | 12187 | 13863 | |||||
11405 | 11944 | 13567 | ||||||
C | 11494 | 11922 | 12644 | 15061 | 17155 | 17236 | 12840 | |
11289 | 11696 | 12405 | 14753 | 16354 | 16381 | 12550 | ||
N | 11365 | 11864 | 12911 | 14822 | 16192 | 18315 | 18610 | |
11170 | 11661 | 12697 | 14580 | 15836 | 17368 | 17475 | ||
O | 11463 | 11941 | 12951 | 14949 | 15932 | 17384 | 20497 | |
11283 | 11739 | 12744 | 14736 | 15797 | 17559 | 19806 | ||
Ne | 11413 | 11863 | 12445 | 14774 | 16126 | 18059 | 22388 | |
11196 | 11631 | 12215 | 14651 | 16166 | 18439 | 20488 | ||
S | 11436 | 11772 | 12362 | 14174 | 15501 | 16257 | 18313 | |
11239 | 11557 | 12133 | 13958 | 15204 | 15884 | 17281 | ||
Ar | 11132 | 11593 | 12114 | 13222 | 14908 | 15554 | 16849 | |
10928 | 11373 | 11894 | 13065 | 14713 | 15333 | 16392 | ||
Torus | Spheroid | |||||||
OIII | SII | OIII | SII | |||||
M.1 | 12187K | 105cm | 15569K | 58cm | ||||
M.2 | 11916K | 103cm | 15070K | 58cm |
Ion | ||||||||
Element | I | II | III | IV | V | VI | VII | |
Model 1 | H | 6.53() | 9.35() | |||||
3.65() | 9.96() | |||||||
He | 1.92() | 7.08() | 2.73() | |||||
3.05() | 1.27() | 8.73() | ||||||
C | 5.92() | 2.94() | 6.77() | 2.33() | 1.86() | 7.64() | 1.00() | |
3.49() | 1.97() | 3.97() | 4.50() | 1.33() | 1.09() | 1.00() | ||
N | 7.32() | 4.95() | 4.71() | 2.62() | 4.18() | 6.47() | 2.76() | |
1.02() | 1.30() | 3.65() | 3.97() | 1.59() | 6.69() | 6.89() | ||
O | 6.15() | 4.98() | 4.21() | 1.82() | 7.09() | 1.34() | 7.28() | |
6.96() | 1.26() | 3.31() | 4.03() | 1.69() | 6.00() | 2.42() | ||
Ne | 3.46() | 6.70() | 9.10() | 2.26() | 3.56() | 4.25() | 2.11() | |
1.39() | 3.32() | 3.71() | 3.51() | 2.05() | 6.55() | 4.49() | ||
S | 1.13() | 1.67() | 7.75() | 5.52() | 1.15() | 6.20() | 8.53() | |
3.18() | 3.89() | 1.73() | 3.53() | 2.43() | 1.57() | 6.91() | ||
Ar | 4.19() | 3.15() | 7.51() | 2.10() | 5.97() | 1.13() | 5.81() | |
1.12() | 2.33() | 5.81() | 2.83() | 1.85() | 2.73() | 2.01() | ||
Model 2 | H | 7.94() | 9.21() | |||||
4.02() | 9.96() | |||||||
He | 2.34() | 7.25() | 2.51() | |||||
3.51() | 1.33() | 8.67() | ||||||
C | 7.97() | 3.23() | 6.49() | 1.93() | 1.29() | 5.29() | 1.00() | |
4.45() | 2.23() | 4.13() | 4.41() | 1.23() | 1.00() | 1.00() | ||
N | 1.00() | 5.44() | 4.24() | 2.15() | 2.62() | 2.20() | 9.23() | |
1.31() | 1.52() | 3.84() | 4.07() | 1.50() | 4.40() | 4.34() | ||
O | 7.91() | 5.29() | 3.78() | 1.40() | 4.27() | 2.05() | 6.62() | |
9.34() | 1.50() | 3.60() | 4.20() | 1.75() | 2.97() | 1.85() | ||
Ne | 4.54() | 7.35() | 9.09() | 1.73() | 1.41() | 1.94() | 2.25() | |
1.75() | 3.85() | 4.19() | 3.86() | 1.89() | 1.73() | 6.89() | ||
S | 1.64() | 1.95() | 7.58() | 4.47() | 7.84() | 3.39() | 3.05() | |
4.23() | 4.86() | 1.96() | 3.61() | 2.39() | 1.47() | 5.16() | ||
Ar | 7.22() | 3.99() | 7.74() | 1.81() | 3.95() | 5.62() | 1.60() | |
1.72() | 3.22() | 7.30() | 3.30() | 1.96() | 2.62() | 1.39() |
Model 1 | Model 2 | ||||
Ionic ratio | Empirical | Abundance | Ionic Fraction | Abundance | Ionic Fraction |
He/H | 4.80() | 5.308() | 58.97% | 5.419() | 60.21% |
He/H | 3.60() | 3.553() | 39.48% | 3.415() | 37.95% |
C/H | - | 9.597() | 23.99% | 1.046() | 26.16% |
C/H | - | 2.486() | 62.14% | 2.415() | 60.38% |
N/H | 1.309() | 9.781() | 40.09% | 1.007() | 43.58% |
N/H | - | 1.095() | 44.88% | 9.670() | 41.86% |
N/H | - | 2.489() | 10.20% | 2.340() | 10.13% |
O/H | 1.597() | 1.048() | 40.30% | 1.201() | 42.44% |
O/H | 1.711() | 1.045() | 40.20% | 1.065() | 37.64% |
O/H | - | 2.526() | 9.72% | 2.776() | 9.81% |
Ne/H | - | 6.069() | 5.47% | 6.571() | 5.92% |
Ne/H | 1.504() | 8.910() | 80.27% | 9.002() | 81.10% |
Ne/H | - | 1.001() | 9.02% | 1.040() | 9.37% |
S/H | 2.041() | 2.120() | 13.50% | 2.430() | 15.48% |
S/H | 1.366() | 1.027() | 65.44% | 1.013() | 64.55% |
S/H | - | 1.841() | 11.73% | 1.755() | 11.18% |
Ar/H | - | 3.429() | 2.54% | 4.244() | 3.14% |
Ar/H | 1.111() | 8.271() | 61.26% | 8.522() | 63.13% |
Ar/H | 4.747() | 3.041() | 22.52% | 2.885() | 21.37% |
Ar/H | - | 5.791() | 4.29% | 5.946() | 4.40% |
Ar/H | - | 7.570() | 5.61% | 7.221() | 5.35% |
Ashkbiz Danehkar