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Abstract
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the
nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In
this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a
collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot
suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is
penetrated by a cool electron beam component. A linear dispersion relation is derived to describe
small-amplitude wave structures that shows a weak dependence of the phase speed on the
electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to
obtain the existence domain of large-amplitude solitary waves, and investigate how their
nonlinear structures depend on the kinematic and physical properties of the electron beam and
the suprathermality (described by κ) of the hot electrons. The results indicate that the electron
beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this
model. While the electron beam co-propagates with the solitary waves, the soliton existence
domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam
speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron
density ratio in high suprathermality (low κ). It is found that the electric potential amplitude
largely declines with increasing the beam speed and the beam-to-cool electron density ratio for
co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron
temperature ratio.

Keywords: electron-acoustic waves, electron beams, nonlinear processes, plasma solitons

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear electron-acoustic solitary waves (EAWs) are typi-
cally produced in a plasma composed of two electron temp-
erature populations, so called cool and hot electrons [1–4],
which have been observed in many space plasmas [5–10]. In
such a plasma, the wave restoring force is provided by the
thermal pressure of the hot electrons, whereas the cool

electrons provide the inertia to support electron-acoustic
oscillations. The phase speed of the EAWs is typically
intermediate between the cool and hot electron thermal
velocities. It has been pointed out that the EAWs only
propagate within a restricted range of the physical conditions,
i.e., the hot-to-cool electron number density ratio between
1/4 and 4, and the hot-to-cool electron temperature ratio is
greater than 10 [3, 11, 12]. As the EAW frequency is much
higher than the ion plasma frequency, the ions may not
largely affect the EAWs, and they usually play the role of a
neutralizing background in the plasma.
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The observations of the upper layer of the Earth’s
magnetosphere revealed the injection of magnetic field-
aligned drifting electrons from solar winds, the so called
electron beam, into two different (cool and hot) electron
populations [13–20], which may excite the EAWs and
modify their existence conditions and nonlinear wave
structures. It has been found that the auroral broadband
electrostatic noise (BEN) emissions observed in the Earth’s
magnetosphere strongly correlate with the magnetic field-
aligned electron beams [17]. In particular, the high time-
resolution GEOTAIL observations of the Earth’s auroral
region showed that the BEN consists a series of nonlinear
localized electrostatic solitary waves, which are associated
with the nonlinear dynamics of the electron beam instability
[18]. The generation of electrostatic solitary waves was also
reported in the polar cap boundary layer (PCBL) region,
which are locally involved electron beams [20]. More
recently, the Magnetospheric Multiscale (MMS) Mission
observations of the Earth’s magnetosphere revealed elec-
trostatic solitary waves in the magnetosheath and magneto-
pause, likely supported by a cool (∼1–20 eV) field-aligned
drifting electron component [21, 22]. The effects of electron
beams have been investigated in EAWs [23–33]. Electron
beams allow the propagation of EAWs with velocity related
to the beam speed, whereas their amplitude and width
depend on the beam physical properties [23, 24]. It has been
found that a hole (hump) in the cool (hot) electron number
density, which is not present without electron beam, allows
the propagation of positively polarized electrostatic solitary
waves [23, 25–27].

A population of energetic hot (∼1–20 keV at Earth’s
bow shock [34]) electrons with suprathermal distributions
has been reported in various space plasmas [35]. This
population was found to have a suprathermal (or non-ther-
mal) tail on its velocity distribution function, and its kinetic
energy is much higher than the thermal energy of the
background cool inertial electrons. It has been shown that
these suprathermal hot electrons are well described by a
family of κ-distribution functions [36]. The deviation from a
Maxwellian distribution is described by the spectral index κ,
i.e., low values of κ are associated with a significant
suprathermality, whereas a Maxwellian distribution is
recovered in the limit k  ¥ [37–39]. Suprathermal (and
non-thermal) electrons have recently been incorporated into
theoretical models of EAWs [40–49]. It has been found that
higher deviations from a Maxwellian raise negative polarity
EAWs [40–43], though the soliton existence regions become
narrower [41, 42]. Moreover, electron-acoustic shock
structures were found to become narrower and steeper in
higher suprathermality [44].

Recently, a number of papers have been devoted to the
effects of both electron beams and suprathermal electrons on
EAWs [30, 31, 49–51]. However, the positive polarity sig-
nature, which was previously found for EAWs [23], was not
reproduced using κ-distributed electrons [30], which might be
due to the chosen parameter range. Previously, a plasma with
suprathermal electrons, inertial warm electron beam, inertial
cool electron and inertial (mobile) ions were found to produce

both positive and negative electrostatic potentials [31]. To
have positively polarized electrostatic waves, the inertia of the
warm electrons, not the beam velocity, seems to be important
[31]. However, it requires a rather high density of cool
electrons [31–33], which does not seem to correspond to
available observations [52, 53]. Alternatively, mobile ions
[54–56] or inertial positrons (or electron holes) [57, 58] can
provide the inertia for the propagation of positive polarity
electrostatic waves with suprathermal electrons in the slow
(ion) or fast (positron) acoustic modes, respectively.

In this paper, we aim to investigate the effects of an electron
beam component, together with suprathermal κ-distributed
electrons, on the existence conditions and properties of the
EAWs. A theoretical two-fluid model is presented in section 2.
In section 3, we derive a linear dispersion relation for the small-
amplitude EAWs. In section 4, the Sagdeev pseudopotential
method is employed to obtain the nonlinear solution of the
large-amplitude EAWs. The occurrence of EAWs is investigated
in section 5. In section 6, we investigate the electron beam
effects on the characteristics of EAWs. Our conclusions are
given in section 7.

2. Theoretical two-fluid model

We consider a four-component collisionless, unmagnetized
plasma consisting of cool inertial background electrons (at
temperature Tc≠0), cool inertial electron beam (at temperature
Tb≠0), hot inertialess suprathermal electrons modeled by a
κ-distribution (at temperature T T T,h b c ), and uniformly dis-
tributed stationary ions.

The fluid model is governed by the following one-
dimensional equations:
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where nj, uj and pj are, respectively, the number density, the
velocity and the pressure of the cool background electrons
(denoted by index j=c) and the electron beam (denoted by
index j=b), nh,0 and Th are, respectively, the equilibrium
number density and the temperature of the hot electrons
modeled by the κ-distribution equation (4) [37–39], the
spectral index κ measures the deviation from a Maxwellian
distribution ( 3 2k > ), ni,0 the undisturbed ion density, Z the
number of ions, f the electrostatic wave potential, e the
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elementary charge, me the electron mass, ε0 the permittivity
constant, kB the Boltzmann constant, and γ=( f+2)/f
denotes the specific heat ratio for f degrees of freedom. For
the adiabatic (cool and beam) electrons in 1D ( f=1), we get
γ=3. The ions are assumed to be stationary, i.e.,
ni=ni,0=const. at all times. As the plasma is quasi-neutral
at equilibrium, we have equation (5), where nc,0 and nb,0 are
the equilibrium number density of the cool background
electrons and the electron beam, respectively. All four com-
ponents are coupled via the Poisson’s equation (6).

Normalizing equations (1)–(6) by appropriate quantities,
we obtain a dimensionless set of fluid equations as follows:

n

t

n u

x
0, 7

j j j¶

¶
+

¶

¶
=

( )
( )

u

t
u

u

x x n

p

x
, 8

j
j

j j h

j

j,f q¶

¶
+

¶

¶
=

¶
¶

-
¶

¶
( )

p

t
u

p

x
p

u

x
3 0, 9

j
j

j
j

j¶

¶
+

¶

¶
+

¶

¶
= ( )

x
n

n

1

1 , 10

h c b c c

b c b h c

2

2 , ,

, , 3

2

1 2

f
r r

r r
f

k

¶
¶

= - + + +

+ + -
-

k- +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )

where the density variables nc and nb are, respectively,
normalized by nc,0 and nb,0, the velocities uc and ub scaled
by the hot electron thermal speed c k T mh eth B

1 2= ( ) , the
wave potential f scaled by kBTh/e, and time and space
scaled by the plasma period n e mpc c e

1
,0

2
0

1 2w e=- -( ) and the
characteristic length k T n eh c0 0 B ,0

2 1 2l e= ( ) , respectively.
The normalized beam speed is defined as Vb=ub,0/cth,
where ub,0 is the beam velocity at equilibrium. The hot-to-
cool electron number density ratio, ρh,c, and the beam-to-
cool electron number density ratio, ρb,c, are respectively
defined as

n n n n, ,h c h c b c b c, ,0 ,0 , ,0 ,0r r= =

which imply Zni,0/nc,0=1+ρh,c+ρb,c.
Landau damping is minimized if n n0.2 c c,0 ,0 +(

n 0.8h,0 ) [3, 11, 12]. We consider the region 0.25 
4h c, r in which the linear waves are not strongly damped.

The cool-to-hot electron temperature ratio, θc,h, and the
beam-to-hot electron temperature ratio, θb,h, are defined
respectively as

T T T T, .c h c h b h b h, ,q q= =

The linear waves survive Landau damping if Th/Tc?10
[3, 11, 12], so we consider the region 0.1c h,q  where the
waves are not strongly damped. Similarly, EAWs excited by
the electron beam are weakly damped when the hot to beam
electron temperature ratio becomes more than 10. We notice
that the observations of the BEN in the auroral zone indi-
cated that the presence of magnetic field-aligned electron
beams with Tb∼1 eV, while hot electron population with
Th∼500 eV [59], or Tb∼50 eV and Th∼200–990 eV
[17]. Moreover, the observations of the PCBL region

pointed Tb∼100 eV and Th∼25 keV [20]. Recently, the
MMS observations of the magnetosphere plasma reported
field-aligned drifting electrons with Tb∼1–20 eV [21, 22]
along with hot electrons having Th∼1 keV [21]. Hence, we
can assume θb,h=0.1.

To preserve the excitation of electrostatic waves, there
should be no wave magnetic effects and no current from
Ampère’s law [60], i.e. jb,0=nb,0ub,0;0. Thus, the electron
beam speed Vb and the beam-to-cool electron number density
ratio ρb,c should satisfy the trivially current condition

V 1b c b,r  [55], in addition to the weakly damped condition
0.1b h,q  for the beam-to-hot electron temperature ratio, in

order to maintain the excitation of EAWs as the electron beam
penetrates into the plasma.

3. Linear dispersion relation

To study linear small-amplitude wave solutions of the fluid
model, we obtain linearized forms of equations (7)–(10). We
apply a small deviation from the equilibrium state, which
produces the derivatives of the first order amplitudes, and
keep the expansion up to first order. The linear dispersion
relation for EAWs is then as follows:
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where 3 c h,q and 3 b h,q are basically the (normalized) ther-
mal velocities of the cool electrons and the electron beam,
respectively.

Equation (11) indicates that the phase speed (ω/k)
increases with raising the cool-to-hot electron temperature
ratio θc,h=Tc/Th, which is in agreement with [42]. Although
the frequency ω(k) (also the phase speed) increases with
raising the beam-to-hot electron temperature ratio θ

b,h=Tb/Th, this linear effect is negligible due to small values
of the beam-to-cool electron number density ratio ρb,c. In the
limit 0b c,r  (in the absence of the electron beam),
equation (11) recovers precisely equation (14) in [42].

Figure 1 shows the dispersion curve (11) of the electron-
acoustic mode in the cold limit (Tc=Tb=0). It can be seen
how varying the electron beam parameters Vb and ρb,c affect
the dispersion curve. The phase speed increases weakly with
an increase in Vb and ρb,c. Additionally, an increase in the
number density of suprathermal hot electrons or/and the
suprathermality (decreasing κ) also decreases the phase speed
(see figure 1 in [42]).

Following [12], the wave avoids being strongly damped
if its phase velocity is between the cool electron and hot
electron thermal speed c k ctc thw  (or the normalized
region here k 1c h,q w  ). Moreover, the wave is
weakly damped for k0.2 0.6Dc l , so this region could be
of interest only. Here, c k T mtc c eB

1 2= ( ) is the cool electron
thermal speed, and k T n eDc c c0 B ,0

2 1 2l e= ( ) is the cool
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electron Debye length. As seen in figure 1, the phase speed of
the linear wave is inside the weakly damped region (0<
ω/k<1, while Tc=Tb=0). The physical conditions for
minimizing weakly Landau damping (0.25 4h c, r ,

0.1c h,q  ) may also prevent the phase velocity of the waves
being strongly Landau damped by either of the cool or hot
electrons.

4. Nonlinear pseudopotential approach

To obtain nonlinear large-amplitude wave solutions of the
fluid model, it is convenient to consider a stationary frame
moving with a constant normalized velocity M, so
called the Mach number. This implies the transformation
ξ=x−Mt that replaces the space and time derivatives

with x d dx¶ ¶ = and t Md dx¶ ¶ = - , respectively.
Equations (7)–(10) in the corresponding reference frame
take the following form:
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It is assume that the equilibrium state is reached at infinities
(x  ¥). We then integrate the above fluid equations,
apply the boundary conditions nc=1, pc=1, uc=0,
nb=1, pb=1, ub=Vb and f=0 at infinities, and
derive
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Combining equations (19)–(23) and solving them lead to
the following solutions for the cool electron density, nc, and
the electron beam density, nb, respectively:
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Equation (24) is exactly the same as equation (29) in [42].
Taking the boundary conditions n n 1c b= = at f=0, the
negative sign must be used in equations (24) and (25). Further-
more, the cool electrons and the electron beam are supersonic at

Figure 1. (a) Variation of the dispersion curve for different values of
the normalized beam speed Vb is depicted. Curves from bottom to
top: Vb=0 (solid), 0.5 (dashed), 0.55 (dotted–dashed), and 0.6
(dotted curve). Here, ρb,c=0.001. (b) Variation of the dispersion
curve for different values of the beam-to-cool electron number
density ratio ρb,c. Curves from bottom to top: ρb,c=0.0 (solid),
0.001 (dashed), 0.002 (dotted–dashed curve), and 0.004 (dotted
curve). Here, Vb=0.5. For both panels, we have taken: ρh,c=1,
κ=3, and θc,h=θb,h=0.
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M 3 c h,q> and M V 3b b h,q> + , while the hot electrons are
subsonic at M<1. Considering the reality conditions of
the density variables, the limits on the electrostatic potential
value become M 3 c hlim

1

2 ,
2f f q> = - -- ( )( ) for V 0b 

(counter-propagation case), and M V 3b b h
1

2 ,
2q- - -( ) for

Vb>0 (co-propagation case), which are associated with nega-
tively polarized electrostatic solitary wave structures.

Substituting equations (24)–(25) into the Poisson’s
equation, multiplying the resulting equation by df/dξ,
integrating and taking into account the conditions at
infinities (d d 0f x  ) yield a pseudo-energy balance
equation
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In the absence of the electron beam ( 0b c,r  ), we precisely
recover equation (33) in [42].

5. Existence conditions for electron-acoustic
solitons

To maintain solitary waves, the origin at f=0 must be a
root and a local maximum of Ψ in equation (27), so Ψ

(f)=0, 0fY¢ =( ) and 0fY <( ) at f=0, where primes
denote derivatives with respect to f. As the first two con-
straints are satisfied, the condition for the lower limit
becomes F M 01 0f= -Y >f=( ) ( )∣ . This yields the fol-
lowing equation for the minimum value for the Mach
number M:
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Equation (28) constrains the lower limit for the Mach
number, M1 (κ, ρh,c, θc,h, ρb,c, θb,h, Vb).

An upper limit for M is obtained when the density profile
reaches the complex value at M 3 c hlim
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. This yields the following equation
for the upper limit in M in the case of counter-propagating
(V 0b  ),
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and the following equation for the upper limit inM in the case
of co-propagating (Vb>0),
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Solving equations (29) and (30) constrains the upper limit for
the Mach number, M2(κ, ρh,c, θc,h, ρb,c, θ b,h, Vb). In the
absence of the electron beam, equations (28) and (29) recover
precisely equations (34) and (36) in [42].

The soliton existence regions are shown in figures 2–4
for different parameters of the electron beam and different
values of the suprathermality (described by κ) of the hot
electrons. Solitary structures of the electrostatic potential may
occur in the range M M M1 2< < , which depends on the
parameters κ, ρh,c, θc,h, ρb,c, θb,h and Vb. Furthermore,
we assumed that the cool electrons are super-
sonic (M 3 c h,q> ), as well as the electron beam
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M >V 3b b h,q+ ), whereas the hot electrons are subsonic
(M<1).

Figure 2 shows the existence domain of EAWs in two
opposite cases: in (a) a very high suprathermality (κ=3),
and (b) a very low suprathermality (κ=100). The normal-
ized beam speed is positive (Vb>0), which means that the
soliton co-propagates with the electron beam. We see that the
existence domain of the Mach number becomes narrower
with strong suprathermality and higher values of the nor-
malized beam speed. Comparing the two frames (a) and (b),
or (c) and (d) in figure 2, we notice that low values of κ

impose that the soliton propagates at lower Mach number

range. From figures 2(a)–(b), it can be seen that increasing the
electron beam thermal pressure (θb,h) shrinks the soliton
existence region. Finally, we note that lower values of the
beam-to-cool electron number density ratio (ρb,c; also see
figure 3 for this effect) shrink the permitted soliton region,
nearly down to nil, for very high Vb ( 0.5 ) and strong
suprathermality (low κ).

As seen in figures 2 and 3, the existence region becomes
narrower for lower values of ρb,c and κ. This is especially
visible in figures 2(a), (c); an increase in ρb,c broadens the
permitted region of the Mach number. It is in contrast to
increasing the hot-to-cool electron number density ratio (ρh,c),

Figure 2. Variation of the lower limit for the Mach number M1

(lower curves) and the upper limit for the Mach number M2 (upper
curves) with the positive normalized beam speed Vb for different
values of the beam-to-hot electron temperature ratio b h,q (a)–(b)
and different values of the beam-to-cool electron number density
ratio ρb,c (c)–(d). Solitons may exist for values of the Mach
number M in the region between the lower and the upper curve(s)
of the same style/color. (a)–(b) Curves: θb,h=0.008 (solid),
0.009 (dashed), and 0.01 (dotted–dashed). Here, we have taken:
(a) κ=3 and (b) κ=100. (c)–(d) Curves: ρb,c=0.001 (solid),
0.002 (dashed), and 0.004 (dotted–dashed). Here, we have taken:
(c) κ=3 and (d) κ=100. The remaining parameters are
ρh,c=1.5, ρb,c=0.008 and θc,h=θb,h=0.01, unless values are
specified.

Figure 3. Variation of the lower limit for the Mach number M1

(lower curves) and the upper limit for the Mach number M2 (upper
curves) with the beam-to-cool electron number density ratio ρb,c
for different values of the positive normalized beam speed Vb

(a)–(b) an0ature ratio θb,h (c)–(d). Solitons may exist for values of
the Mach number M in the region between the lower and the upper
curve(s) of the same style/color. (a)–(b) Curves: Vb=0.3 (solid),
0.35 (dashed), and 0.4 (dotted–dashed). Here, we have taken:
(a) κ=3 and (b) κ=100. (c)–(d) Curves: θb,h=0.008 (solid),
0.009 (dashed), and 0.01 (dotted–dashed). Here, we have taken:
(c) κ=3 and (d) κ=100. The remaining parameters are
ρh,c=1.5, Vb=0.4 and θc,h=θb,h=0.01, unless values are
specified.
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which shrinks down the existence region [42]. We know that
a reduction in the cool electron density (increasing ρh,c) was
responsible for shrinking the existence region. Moreover, we
also notice that a reduction in the electron beam density
(decreasing ρb,c) has a similar effect in the soliton existence
region. Similarly, figure 3 (also see figure 2) shows that
higher values of the normalized beam speed Vb and the
temperature ratio θb,h shrink the permitted region in a strong
suprathermality (low κ).

Figure 4 demonstrates the effect of the hot electron
κ-distribution. The acoustic limits (M1 and M2) decrease
rapidly as approaching the limiting value 3 2k  . Moving
toward a Maxwellian distribution (k  ¥) broadens the
permitted range of the Mach number. The result is similar to
the trend in figures 2 and 3; stronger suprathermality imposes
that solitons occur in compressed ranges of the Mach number.
It is quite similar to what we found in our previous model
without the electron beam [42].

We also notice that varying the negative normalized
beam speed (Vb<0) trivially change the lower limit M1 and
the upper limit M2 under the excitation conditions V 1b c b,r 
and 0.1b h,q  (figures not shown here). Similarly, the elec-
tron beam thermal pressure (θb,h) and the beam-to-cool elec-
tron number density ratio (ρb,c) have trivial effects on the
existence domain (not shown here) when the normalized
beam speed is negative, in contrast to what we saw in
figures 2(a), (b). Therefore, the existence domain of EAWs
does not affect largely when the soliton counter-propagates
with the electron beam.

6. Nonlinear electron-acoustic wave structures

To study the localized structures of large-amplitude EAWs,
we have solved equation (26) via numerical integration for
various plasma parameters, which allow us to observe their
effects on the nonlinear wave structures. We have found
only negatively polarized solitons, in contrast to what found
in [23], as the κ-distribution may not facilitate reverse
polarity of electrostatic solitary waves. To have positive
polarity in our fluid model, a mobile positive charge such as
ion and positron is required to support the inertia for
acoustic oscillations, while the suprathermal hot electrons
provide the wave restoring force. However, the ion inertia
propagates electrostatic waves in a slow-acoustic mode [54].
Thus, mobile positrons (or electron holes) may provide
the inertia to have positive polarity in a fast-acoustic
mode similar to the negatively polarized electron-acoustic
solitons [58].

Figure 5 shows the variation of the pseudopotential fY( )
with the normalized potential f, for different values of the
positive normalized beam speed Vb (keeping ρh,c=1,
ρb,c=0.008, θc,h=θb,h=0.01, κ=4.0 and Mach number
M=0.9, all fixed). The pulse amplitude mf∣ ∣ decreases with
increasing Vb, which are in agreement with [30, 31, 49]. We
algebraically determined the fluid density (figure 5(c)) and
velocity disturbances (figure 5(d)) of the cool electrons and
the electron beam (figures 5(e), (f)). It is noticeable that an
increase in positive Vb (co-propagation) compresses the dis-
turbances of uc, nc, nb and ub−Vb. Similarly, figure 6 depicts
the variation of the pseudopotential Ψ(f) for different values
of the negative normalized beam speed Vb. It is seen that the
pulse amplitude mf∣ ∣ is slightly altered with a change in
negative Vb (counter-propagation), in contrast to what we saw
in figure 5.

Figure 4. Variation of the lower limit for the Mach number M1

(lower curves) and the upper limit for the Mach number M2 (upper
curves) with the suprathermality parameter κ for different values of
the positive normalized beam speed Vb (upper panel), the beam-to-
cool electron number density ratio ρb,c (middle panel) and the beam-
to-hot electron temperature ratio θb,h (bottom panel). Solitons may
exist for values of the Mach number M in the region between the
lower and upper curves of the same style/color. Upper panel:
Vb=0.35 (solid curve), 0.40 (dashed), and 0.45 (dotted–dashed).
Here, we have taken ρh,c=1.5, θc,h=θb,h=0.01 and
ρb,c=0.004. Middle panel: ρb,c=0.004 (solid curve), 0.006
(dashed), and 0.008 (dotted–dashed). Here, we have taken
ρh,c=1.5, θc,h=θb,h=0.01 and Vb=0.4. Lower panel:
θb,h=0.001 (solid curve), 0.005 (dashed), and 0.01 (dotted–
dashed). Here, we have taken ρh,c=1.5, ρb,c=0.004, θc,h=0.01
and Vb=0.4.
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Figure 7 shows the variation of the pseudopotential Ψ(f)
for different values of the beam-to-cool electron number
density ratio ρb,c. Both the root and the depth of the Sagdeev
potential well increase with decreasing ρb,c=nb,0/nc,0. This
means that increasing the cool electron density and/or
decreasing the electron beam density increases the negative
polarity solitary waves.

Figure 8 shows the thermal effect of the electron beam
through θb,h=Tb/Th, which agrees with [30, 49]. We see that
the soliton excitations are amplified with either an increase in
the suprathermal hot electron temperature (Th) or a decrease

Figure 5. (a) The pseudopotential Ψ(f) of electron-acoustic solitons
and the associated solutions: (b) electric potential pulse f, (c) density
n and (d) velocity u of the cool electron fluid, (e) density nb and
(f) velocity ub of the electron beam are depicted versus position ξ, for
different values of the positive normalized beam speed Vb. We have
taken: Vb=0.2 (solid curve), 0.3 (dashed curve), and 0.4 (dotted–
dashed curve). The other parameter values are: ρh,c=1,
ρb,c=0.008, θc,h=θb,h=0.01, κ=4.0 and M=0.9.

Figure 6. (a) The pseudopotential Ψ(f) of electron-acoustic solitons
and the associated solutions: (b) electric potential pulse f is depicted
versus position ξ, for different values of the negative normalized
beam speed Vb. We have taken: Vb=−0.2 (solid curve), −0.4
(dashed curve), and −0.6 (dotted–dashed curve). The other
parameter values are: ρh,c=1, ρb,c=0.008, θc,h=θb,h=0.01,
κ=4.0 and M=0.9.

Figure 7. (a) The pseudopotential Ψ(f) of electron-acoustic solitons
and the associated solutions: (b) electric potential pulse f is depicted
versus position ξ, for different values of the beam-to-cool electron
number density ratio ρb,c. From bottom to top: ρb,c=0.001 (solid
curve); 0.004 (dashed curve); 0.008 (dotted–dashed curve). Here
ρh,c=1, θc,h=θb,h=0.01, Vb=0.2, κ=4.0 and M=0.9.
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in the electron beam temperature (Tb). Therefore, thermal
effects of the hot electrons relative to the electron beam
amplify the electric potential at a fixed Mach number (similar
to what found for the hot relative to the cool electrons via
θc,h=Tc/Th in [42]).

Figure 9 summarizes the behavior of the negative
polarity EAWs co-propagating with the beam speed
(V 0b > ). It can be seen that the maximum absolute pulse
amplitude mf∣ ∣ of negative electric potentials is significantly
reduced by increasing the normalized beam speed Vb and the
beam-to-cool electron number density ratio ρb,c (see
figures 9(a), (b)). However, an increase in the beam-to-hot
electron temperature ratio θb,h slightly decreases the max-
imum absolute pulse amplitude mf∣ ∣ of negative electric
potentials (see figure 9(c)). Similarly, in figure 10, we have
depicted the variation of the absolute pulse amplitude
of negative polarity EAWs counter-propagating with the
electron beam (Vb<0) versus the normalized beam speed
Vb and the beam-to-cool electron number density ratio ρb,c.
It is seen that the absolute pulse amplitude mf∣ ∣ of negatively
polarized EAWs slightly grows with an increase in the
absolute normalized speed Vb∣ ∣ of the counter-propagating
electron beam. Moreover, figure 10(b) shows that the
absolute pulse amplitude of negative polarity solitons is
slightly reduced by increasing the beam-to-cool electron
number density ratio ρb,c in the counter-propagation case,

which is dissimilar to the large amplification in the co-
propagation case shown in figure 9(b). Under the trivially current
( V 1b c b,r  ) and weakly damped ( 0.1b h,q  ) excitation
conditions, varying the beam-to-hot electron temperature ratio
θb,h insignificantly alters the maximum absolute pulse amplitude
of negative electric potentials in the counter-propagation situation
(figure not presented here).

Figure 8. (a) The pseudopotential Ψ(f) of electron-acoustic solitons
and the associated solutions: (b) electric potential pulse f is depicted
versus position ξ, for different values of the beam-to-hot electron
temperature ratio θb,h. From bottom to top: θb,h=0.001 (solid
curve); 0.005 (dashed curve); 0.01 (dotted–dashed curve). Here
ρh,c=1, ρb,c=0.008, θc,h=0.01, Vb=0.4, κ=4.0
and M=0.9.

Figure 9. Variation of the absolute pulse amplitude mf∣ ∣ of electron-
acoustic solitons versus (a) the positive normalized beam speed Vb,
(b) the beam-to-cool electron number density ratio ρb,c, and (c) the
beam-to-hot electron temperature ratio θb,h. The remaining para-
meters are ρh,c=1, ρb,c=0.008, θc,h=0.01, θb,h=0.01,
Vb=0.4, κ=4.0 and M=0.9, unless values are specified.
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7. Conclusions

We have studied the propagation of EAWs in a collisionless,
unmagnetized plasma model consisting of cool inertial back-
ground electrons, cool inertial beam electrons, κ-distributed
suprathermal hot electrons and stationary ions.

We have obtained a linear dispersion relation for the
small-amplitude EAWs and determined the effects of electron
beam properties on the dispersion relation, through the beam-
to-cool electron population ratio ρb,c and the normalized beam
speed Vb. It is found that the phase speed increases weakly
with an increase in ρb,c and Vb, while it is largely decreased by
increasing the suprathermality (decreasing κ and increasing
ρh,c; see [42]).

We have employed the Sagdeev’s pseudopotential tech-
nique to study the nonlinear dynamics of large-amplitude
EAWs, and to determine the permitted parametric regions
where allow solitons to propagate in the plasma. The results
of this study indicate that the existence domain of solitons,
which co-propagate with the electron beam (Vb>0),
becomes narrower with an increase in the suprathermality
(decreasing the spectral index κ), increasing the normalized
beam speed Vb, decreasing the beam-to-cool electron

population ratio ρb,c, and increasing the beam-to-hot electron
temperature ratio θb,h. However, the counter-propagation
(Vb<0) slightly affects the existence domain of the non-
linear EAWs.

We have numerically solved the pseudo-energy balance
equation (26) to study effects of various plasma parameters on
the nonlinear EAWs. It is found that increasing the beam-to-cool
electron density ratio ρb,c largely decreases the electric potential
amplitude in the co-propagation case (Vb>0; see figures 7 and
9), but slightly in the counter-propagation case (Vb<0; see
figure 10). Increasing the positive beam speed (Vb>0)
significantly decreases the soliton electric potential amplitude
(figures 5 and 9). However, a change in the negative beam speed
(Vb<0) slightly alters the electric potential amplitude (figures 6
and 10) under the excitation conditions ( V 1b c b,r  and

0.1b h,q  ). We also see that decreasing the beam-to-hot elec-
tron temperature ratio θb,h slightly amplifies the electric potential
amplitude in the co-propagation case (Vb>0; see figures 8 and
9), but insignificantly alters the soliton pulse in the counter-
propagation situation (Vb<0) under the excitation conditions.
Some of these results are aligned with the previous findings by
other authors [30, 31, 49].

Our two-fluid model predicts only the propagation of
negatively polarized EAWs. However, we did not find any
positive polarity electrostatic solitons. This is in agreement
with [30], but disagrees with [23, 31]. Apparently, the
inclusion of κ-distribution (or inertialess) electrons does not
permit positive polarity electrostatic solitons. References
[52, 61] concluded that positive polarity electrostatic solitary
waves can be produced in a parameter range if hot electron
inertia is retained. In order to find solitons with a positive
polarity signature, it is imperative to retain hot electron
inertia in combination with the thermal effects [53]. How-
ever, it still requires a high density of cool electrons to
produce positive electrostatic potential solitons [53], larger
than what are currently measured in observations. It is
known that the ion inertia, combined with suprathermal
electrons, can generate positive polarity electrostatic waves,
but in the ion-acoustic mode, and propagate much slower
than electrostatic solitary waves in the electron-acoustic
mode (see e.g. [54]). Alternatively, mobile cool positrons (or
electron holes), together with suprathermal hot electrons,
may support positive polarity electrostatic waves with the
propagation speed comparable to the negative polarity
electron-acoustic solitons [58].

The present study was motivated by electrostatic solitary
waves observed in the BEN [17], the PCBL region [20], the
magnetopause [21], and the magnetosheath [22] of the Earth’s
magnetosphere, where hot suprathermal electrons and
magnetic field-aligned electron beams are found to be present.
For example, considering the parameters of the BEN plasma
(Tb∼1 eV [59], Th∼990 eV, and nc∼nh∼10 cm−3

[17]), the peak-to-peak amplitude of the normalized electric
field is calculated to be E x 7 10 3f= -¶ ¶ » ´ - (figures
not shown) based on the electric potential pulse f at
θb,h=Tb/Th=0.001 with the physical parameters listed
in figure 8. This corresponds to a peak-to-peak electric
field of E≈90 mVm−1 (potential f and space x are,

Figure 10. Variation of the absolute pulse amplitude mf∣ ∣ of electron-
acoustic solitons versus (a) the negative normalized beam speed Vb

and (b) the beam-to-cool electron number density ratio ρb,c. The
remaining parameters are ρh,c=1, ρb,c=0.008, θc,h=0.01,
θb,h=0.01, Vb=−0.4, κ=4.0 and M=0.9, unless values are
specified.
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respectively, unnormalized by k T e 9.9 10hB
5= ´ mV and

k T n e 74h c0 0 B ,0
2l e= = m), which is in agreement with

the peak-to-peak electric filed of ∼100 mVm−1 observed in
the BEN [17]. Similarly, the parameters of the magnetosphere
plasma observed by the MMS mission [21, 22] (Tb∼1 eV,
Th∼1 keV, nb∼0.2 cm−3, and nh∼30 cm−3) yield a peak-
to-peak electric field of E≈160 mVm−1 (k T e 10hB

6= mV
and λ0=43 m), which is roughly close to the large-ampl-
itude, parallel electric fields of ∼100mVm−1 measured at the
magnetic reconnection region of the Earth’s magnetopause [21].

In conclusion, the parametric investigations presented in
sections 5 and 6 suggest that the propagation of EAWs, as
well as the nonlinear dynamics of large-amplitude electro-
static wave structures, can be altered by the electron beam, in
the presence of suprathermal electrons. The results could have
important implications for the characteristics of nonlinear
plasma waves observed in several space and astrophysical
plasma environments such as the Earth’s magnetosphere.
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