- 1
- D. Birmingham, M. Blau, M. Rakowski and G. Thompson,
Topological field theory, Phys. Rept. 209 (1991) 129-340.
- 2
- J. M. F. Labastida and C. Lozano, Lectures on
topological quantum field theory, in Proceedings of La
Plata-CERN-Santiago de Compostela Meeting on Trends in Theoretical Physics,
La Plata, Argentina, April-May 1997, eds. H. Falomir, R. E. Gamboa Sarav
í, F. A. Schaposnik (AIP, New York 1998), AIP Conference Proceedings
vol. 419, 54-93 [arXiv:hep-th/9709192].
- 3
- P. Schaller and T. Strobl, Poisson structure induced
(topological) field theories, Mod. Phys. Lett. A9 (1994)
3129-3136 [arXiv:hep-th/9405110].
- 4
- N. Ikeda, Two-dimensional gravity and nonlinear gauge
theory, Annals Phys. 235 (1994) 435-464
[arXiv:hep-th/9312059].
- 5
- A. Yu. Alekseev, P. Schaller and T. Strobl,
Topological WZW model in the generalized momentum representation,
Phys. Rev. D52 (1995) 7146-7160 [arXiv:hep-th/9505012].
- 6
- T. Klösch and T. Strobl, Classical and quantum
gravity in 1+1 dimensions: I. A unifying approach, Class. Quantum
Grav. 13 (1996) 965-983 [arXiv:gr-qc/9508020]; Erratum-ibid.
14 (1997) 825.
- 7
- T. Klösch and T. Strobl, Classical and quantum
gravity in 1+1 dimensions. II: The universal coverings, Class.
Quantum Grav. 13 (1996) 2395-2421 [arXiv:gr-qc/9511081].
- 8
- T. Klösch and T. Strobl, Classical and quantum
gravity in 1+1 dimensions: III. Solutions of arbitrary topology,
Class. Quantum Grav. 14 (1997) 1689-1723 [arXiv:hep-th/9607226].
- 9
- A. S. Cattaneo and G. Felder, A path integral
approach to the Kontsevich quantization formula, Commun. Math. Phys.
212 (2000) 591-611 [arXiv:math/9902090].
- 10
- A. S. Cattaneo and G. Felder, Poisson sigma models
and deformation quantization, Mod. Phys. Lett. A16 (2001)
179-189 [arXiv:hep-th/0102208].
- 11
- C. Teitelboim, Gravitation and hamiltonian structure
in two spacetime dimensions, Phys. Lett. B126 (1983)
41-45.
- 12
- R. Jackiw, Lower dimensional gravity, Nucl.
Phys. B252 (1985) 343-356.
- 13
- M. O. Katanayev and I. V. Volovich, String model
with dynamical geometry and torsion, Phys. Lett. B175
(1986) 413-416 [arXiv:hep-th/0209014].
- 14
- J. Brown, Lower Dimensional Gravity, World
Scientific, Singapore 1988.
- 15
- M. O. Katanaev and I. V. Volovich, Two-dimensional
gravity with dynamical torsion and strings, Annals Phys. 197
(1990) 1-32.
- 16
- H.-J. Schmidt, Scale-invariant gravity in two
dimensions, J. Math. Phys. 32 (1991) 1562-1566.
- 17
- S. N. Solodukhin, Topological 2D Riemann-Cartan-Weyl
gravity, Class. Quantum Grav. 10 (1993) 1011-1021.
- 18
- N. Ikeda and K. I. Izawa, General form of
dilaton gravity and nonlinear gauge theory, Prog. Theor. Phys.
90 (1993) 237-245 [arXiv:hep-th/9304012].
- 19
- T. Strobl, Dirac quantization of gravity-Yang-Mills
systems in 1+1 dimensions, Phys. Rev. D50 (1994)
7346-7350 [arXiv:hep-th/9403121].
- 20
- D. Grumiller, W. Kummer and D. V. Vassilevich,
Dilaton gravity in two dimensions, Phys. Rept. 369 (2002)
327-430 [arXiv:hep-th/0204253].
- 21
- T. Strobl, Gravity in two space-time
dimensions, Habilitation thesis RWTH Aachen, May 1999, arXiv:hep-th/0011240.
- 22
- K. Ezawa, Ashtekar's formulation for N = 1, 2 supergravities
as “constrained” BF theories, Prog. Theor. Phys. 95
(1996) 863-882 [arXiv:hep-th/9511047].
- 23
- L. Freidel, K. Krasnov and R. Puzio, BF description of
higher-dimensional gravity theories, Adv. Theor. Math. Phys.
3 (1999) 1289-1324 [arXiv:hep-th/9901069].
- 24
- L. Smolin, Holographic formulation of quantum general
relativity, Phys. Rev. D61 (2000) 084007
[arXiv:hep-th/9808191].
- 25
- Y. Ling and L. Smolin, Holographic formulation of quantum
supergravity, Phys. Rev. D63 (2001) 064010
[arXiv:hep-th/0009018].
- 26
- K.-I. Izawa, On nonlinear gauge theory from a
deformation theory perspective, Prog. Theor. Phys. 103
(2000) 225-228 [arXiv:hep-th/9910133].
- 27
- C. Bizdadea, Note on two-dimensional nonlinear gauge
theories, Mod. Phys. Lett. A15 (2000) 2047-2055
[arXiv:hep-th/0201059].
- 28
- N. Ikeda, A deformation of three dimensional BF
theory, J.High Energy Phys. JHEP11(2000)009
[arXiv:hep-th/0010096].
- 29
- N. Ikeda, Deformation of BF theories, topological
open membrane and a generalization of the star deformation, J. High
Energy Phys. JHEP07(2001)037 [arXiv:hep-th/0105286].
- 30
- C. Bizdadea, E. M. Cioroianu and S. O. Saliu,
Hamiltonian cohomological derivation of four-dimensional nonlinear gauge
theories, Int. J. Mod. Phys. A17 (2002) 2191-2210
[arXiv:hep-th/0206186].
- 31
- C. Bizdadea, C. C. Ciobîrca, E. M. Cioroianu,
S. O. Saliu and S. C. Sararu, Hamiltonian BRST deformation of a class of
n-dimensional BF-type theories, J. High Energy Phys. JHEP01
(2003)049 [arXiv:hep-th/0302037].
- 32
- E. M. Cioroianu and S. C. Sararu, Self-interactions
in a topological BF-type model in D = 5, J. High Energy Phys. JHEP
07(2005)056 [arXiv:hep-th/0508035].
- 33
- E. M. Cioroianu and S. C. Sararu, PT-symmetry
breaking Hamiltonian interactions in BF models, Int. J. Mod. Phys.
A21 (2006) 2573-2599 [arXiv:hep-th/0606164].
- 34
- N. Ikeda, Chern-Simons gauge theory coupled with BF
theory, Int. J. Mod. Phys. A18 (2003) 2689-2702
[arXiv:hep-th/0203043].
- 35
- E. M. Cioroianu and S. C. Sararu,
Two-dimensional interactions between a BF-type theory and a collection of
vector fields, Int. J. Mod. Phys. A19 (2004) 4101-4125
[arXiv:hep-th/0501056].
- 36
- C. Bizdadea, E. M. Cioroianu, S. O. Saliu and S. C. S
araru, Couplings of a collection of BF models to matter theories,
Eur. Phys. J. C41 (2005) 401-420 [arXiv:hep-th/0508037].
- 37
- C. Bizdadea, E. M. Cioroianu, I. Negru, S. O. Saliu
and S. C. Sararu, On the generalized Freedman-Townsend model, J.
High Energy Phys. JHEP10(2006)004 [arXiv:0704.3407(hep-th)].
- 38
- C. Bizdadea, E. M. Cioroianu, S. O. Saliu, S. C. Sa
raru and M. Iordache, Four-dimensional couplings among BF and massless
Rarita-Schwinger theories: a BRST cohomological approach, Eur.
Phys. J. C58 (2008) 123-149 [arXiv:0812.3810(hep-th)].
- 39
- G. Barnich and M. Henneaux, Consistent couplings between
fields with a gauge freedom and deformations of the master equation,
Phys. Lett. B311 (1993) 123-129 [arXiv:hep-th/9304057].
- 40
- M. Henneaux, Consistent interactions between gauge fields:
the cohomological approach, Contemp. Math. 219 (1998) 93
[arXiv:hep-th/9712226].
- 41
- C. Bizdadea, Consistent interactions in the Hamiltonian
BRST formalism, Acta Phys. Polon. B32 (2001) 2843-2862
[arXiv:hep-th/0003199].
- 42
- G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology
in the antifield formalism: I. General theorems, Commun. Math. Phys.
174 (1995) 57-91 [arXiv:hep-th/9405109].
- 43
- G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology
in the antifield formalism: II. Application to Yang-Mills theory,
Commun. Math. Phys. 174 (1995) 93-116 [arXiv:hep-th/9405194].
- 44
- G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology
in gauge theories, Phys. Rept. 338 (2000) 439-569
[arXiv:hep-th/0002245].
- 45
- N. Ikeda, Topological field theories and geometry
of Batalin-Vilkovisky algebras, J. High Energy Phys. JHEP10
(2002)076 [arXiv:hep-th/0209042].
- 46
- N. Ikeda and K.-I. Izawa, Dimensional
reduction of nonlinear gauge theories, J. High Energy Phys. JHEP
09(2004)030 [arXiv:hep-th/0407243].
- 47
- T. Curtright and P. G. O. Freund, Massive dual fields,
Nucl. Phys. B172 (1980) 413-424.
- 48
- T. Curtright, Generalized gauge fields, Phys. Lett.
B165 (1985) 304-308.
- 49
- C. S. Aulakh, I. G. Koh and S. Ouvry, Higher spin fields with
mixed symmetry, Phys. Lett. B173 (1986) 284-288.
- 50
- J. M. Labastida and T. R. Morris, Massless mixed-symmetry
bosonic free fields, Phys. Lett. B180 (1986) 101-106.
- 51
- J. M. Labastida, Massless particles in arbitrary
representations of the Lorentz group, Nucl. Phys. B322
(1989) 185-209.
- 52
- C. Burdik, A. Pashnev and M. Tsulaia, On the mixed symmetry
irreducible representations of the Poincaré group in the BRST approach,
Mod. Phys. Lett. A16 (2001) 731-746
[arXiv:hep-th/0101201].
- 53
- Yu. M. Zinoviev, On massive mixed symmetry tensor fields in
Minkowski space and [arXiv:hep-th/0211233].
- 54
- C. M. Hull, Duality in gravity and higher spin gauge
fields, J. High Energy Phys. JHEP09(2001)027
[arXiv:hep-th/0107149].
- 55
- X. Bekaert and N. Boulanger, Massless spin-two field
S-duality, Class. Quantum Grav. 20 (2003) S417-S423
[arXiv:hep-th/0212131].
- 56
- X. Bekaert and N. Boulanger, On geometric equations and
duality for free higher spins, Phys. Lett. B561 (2003)
183-190 [arXiv:hep-th/0301243].
- 57
- H. Casini, R. Montemayor and L. F. Urrutia, Duality for
symmetric second rank tensors. II. The linearized gravitational field,
Phys. Rev. D68 (2003) 065011 [arXiv:hep-th/0304228].
- 58
- N. Boulanger, S. Cnockaert and M. Henneaux, A note on
spin-s duality, J. High Energy Phys. JHEP06(2003)060
[arXiv:hep-th/0306023].
- 59
- P. de Medeiros and C. Hull, Exotic tensor gauge theory and
duality, Commun. Math. Phys. 235 (2003) 255-273
[arXiv:hep-th/0208155].
- 60
- X. Bekaert and N. Boulanger, Tensor gauge fields in
arbitrary representations of
. Duality and Poincaré
Lemma, Commun. Math. Phys. 245 (2004) 27-67
[arXiv:hep-th/0208058].
- 61
- X. Bekaert and N. Boulanger, Tensor gauge fields in
arbitrary representations of
: II. Quadratic actions,
Commun. Math. Phys. 271 (2007) 723-773
[arXiv:hep-th/0606198].
- 62
- X. Bekaert, N. Boulanger and M. Henneaux, Consistent
deformations of dual formulations of linearized gravity: A no-go result,
Phys. Rev. D67 (2003) 044010 [arXiv:hep-th/0210278].
- 63
- Yu. M. Zinoviev, First order formalism for mixed symmetry
tensor fields [arXiv:hep-th/0304067].
- 64
- Yu. M. Zinoviev, First order formalism for massive mixed
symmetry tensor fields in Minkowski and spaces
[arXiv:hep-th/0306292].
- 65
- N. Boulanger and L. Gualtieri, An exotic theory of
massless spin-2 fields in three dimensions, Class. Quantum Grav.
18 (2001) 1485-1502 [arXiv:hep-th/0012003].
- 66
- S. C. Anco, Parity violating spin-two gauge theories,
Phys. Rev. D67 (2003) 124007 [arXiv:gr-qc/0305026].
- 67
- A. K. Bengtsson, I. Bengtsson and L. Brink, Cubic
interaction terms for arbitrary spin, Nucl. Phys. B227
(1983) 31-40.
- 68
- M. A. Vasiliev, Cubic interactions of bosonic higher spin
gauge fields in , Nucl. Phys. B616 (2001) 106-162
[arXiv:hep-th/0106200]; Erratum-ibid. B652 (2003) 407.
- 69
- E. Sezgin and P. Sundell, bosonic higher spin gauge
theory: symmetry algebra and linearized constraints, Nucl. Phys.
B634 (2002) 120-140 [arXiv:hep-th/0112100].
- 70
- D. Francia and A. Sagnotti, Free geometric equations for
higher spins, Phys. Lett. B543 (2002) 303-310
[arXiv:hep-th/0207002].
- 71
- C. Bizdadea, C. C. Ciobîrca, E. M. Cioroianu, I.
Negru, S. O. Saliu and S. C. Sararu, Interactions of a single massless
tensor field with the mixed symmetry (3,1). No-go results, J. High
Energy Phys. JHEP10(2003)019.
- 72
- N. Boulanger and S. Cnockaert, Consistent deformations of
[p,p]-type gauge field theories, J. High Energy Phys. JHEP
03(2004)031 [arXiv:hep-th/0402180].
- 73
- C. C. Ciobîrca, E. M. Cioroianu and S. O. Saliu,
Cohomological BRST aspects of the massless tensor field with the mixed
symmetry (k,k), Int. J. Mod. Phys. A19 (2004) 4579-4619
[arXiv:hep-th/0403017].
- 74
- C. Bizdadea, C. C. Ciobîrca, E. M. Cioroianu, S.
O. Saliu and S. C. Sararu, Interactions of a massless tensor field with
the mixed symmetry of the Riemann tensor. No-go results, Eur. Phys.
J. C36 (2004) 253-270 [arXiv:hep-th/0306154].
- 75
- X. Bekaert, N. Boulanger and S. Cnockaert, No self-interaction
for two-column massless fields, J. Math. Phys. 46 (2005)
012303 [arXiv:hep-th/0407102].
- 76
- N. Boulanger, S. Leclercq and S. Cnockaert, Parity-violating
vertices for spin-3 gauge fields, Phys.Rev. D73 (2006)
065019 [arXiv:hep-th/0509118].
- 77
- X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge
theory revisited, J. High Energy Phys. JHEP01(2006)052
[arXiv:hep-th/0508048].
- 78
- C. Bizdadea, C. C. Ciobîrca, I. Negru and S. O.
Saliu, Couplings between a single massless tensor field with the mixed
symmetry (3,1) and one vector field, Phys.Rev. D74 (2006)
045031 [arXiv:0705.1048(hep-th)].
- 79
- C. Bizdadea, C. C. Ciobîrca, E. M. Cioroianu and S.
O. Saliu, Interactions between a massless tensor field with the mixed
symmetry of the Riemann tensor and a massless vector field, J. Phys.
A: Math. Gen. 39 (2006) 10549-10564 [arXiv:0705.1054(hep-th)].
- 80
- C. Bizdadea, D. Cornea and S. O. Saliu, No
cross-interactions among different tensor fields with the mixed symmetry (3,
1) intermediated by a vector field, J. Phys. A: Math. Theor.
41 (2008) 285202 [arXiv:0901.4059(hep-th)].
Ashkbiz Danehkar
2018-03-26