4.2 Ionic and total abundances from ORLs

Using the effective recombination coefficients (given in Table 4), we determine ionic abundances, X$ {}^{i+}$/H$ {}^{+}$, from the measured intensities of optical recombination lines (ORLs) as follows:

$\displaystyle \frac{N({\rm X}^{i+})}{N({\rm H}^{+})}=\frac{I({\lambda})}{I({{\r...
...\AA}})}{4861} \frac{\alpha_{\rm eff}({\rm H}\beta)}{\alpha_{\rm eff}(\lambda)},$ (1)

where $ I({\lambda})$ is the intrinsic line flux of the emission line $ \lambda $ emitted by ion $ {\rm X}^{i+}$, $ I({{\rm H}\beta})$ is the intrinsic line flux of H$ \beta $, $ \alpha_{\rm eff}({\rm H}\beta)$ the effective recombination coefficient of H$ \beta $, and $ \alpha_{\rm eff}(\lambda)$ the effective recombination coefficient for the emission line $ \lambda $.

Abundances of helium and carbon from ORLs are given in Table 6. We derived the ionic and total helium abundances from HeI $ \lambda $4471, $ \lambda $5876 and $ \lambda $6678 lines. We assumed the Case B recombination for the HeI lines (Porter et al., 2012; Porter et al., 2013). We adopted an electron temperature of $ T_{\rm e}=5\,000$ K from HeI lines, and an electron density of $ N_{\rm e}=1000$ cm$ {}^{-3}$. We averaged the He$ {}^{+}$/H$ {}^{+}$ ionic abundances from the HeI $ \lambda $4471, $ \lambda $5876 and $ \lambda $6678 lines with weights of 1:3:1, roughly the intrinsic intensity ratios of these three lines. The total He/H abundance ratio is obtained by simply taking the sum of He$ {}^{+}$/H$ {}^{+}$ and He$ {}^{2+}$/H$ {}^{+}$. However, He$ {}^{2+}$/H$ {}^{+}$ is equal to zero, since HeII $ \lambda $4686 is not present. The C$ ^{2+}$ ionic abundance is obtained from C II $ \lambda $6462 and $ \lambda $7236 lines.


Table 6: Empirical ionic abundances derived from ORLs.

Ion
$ \lambda $(Å) Mult Value $ ^{\mathrm{a}}$

He$ ^+$
4471.50 V14 0.141
  5876.66 V11 0.121
  6678.16 V46 0.115
  Mean   0.124

He$ ^{2+}$
4685.68 3.4 0.0

He/H
    0.124
C$ ^{2+}$ 6461.95 V17.40 3.068($ -3$)
  7236.42 V3 1.254($ -3$)
  Mean   2.161($ -3$)
$ ^{\mathrm{a}}$
Assuming $ T_{\rm e}=5\,000$K and $ N_{\rm e}=1000$ $ {\rm cm}^{-3}$.

Ashkbiz Danehkar
2018-03-26