3.4 Dust modeling

PB 8 is known to be very dusty (e.g. Lenzuni et al., 1989; Stasinska & Szczerba, 1999), which must influence the radiative processes in the nebula. Lenzuni et al. (1989) studied the IRAS measurements (25, 60 and 100 $ \mu $m fluxes), and derived a dust temperature of $ T_{\rm d} = 85 \pm 0.4$K, an optical depth of $ \tau($Ly-c$ )=0.63$ and a dust-to-gas mass ratio of $ \rho_{\rm d}/\rho_{\rm g} =0.0123$ from a blackbody function fitted to the IRAS data. Similarly, Stasinska & Szczerba (1999) determined $ T_{\rm d} = 85$K, but $ \rho_{\rm d}/\rho_{\rm g} =0.0096$ from the broad band IRAS data. From the comparison of the mid-IR emission with a blackbody model of $ 150$K, Todt et al. (2010) suggested that it possibly contains a warm dust with different dust compositions. We notice that the models MC1 and MC2 cannot provide thermal effects to account for the Spitzer IR continuum, so a dust component is necessary to reproduce the spectral energy distribution (SED) of the nebula observed in the IR range. The third model (MC3) presented here treats dust properties of PB 8 using the dust radiative transfer features included in the MOCASSIN (Ercolano et al., 2005). Discrete grain sizes have been chosen based on the size range given by Mathis et al. (1977). The absence of the 9.7 $ \mu $m amorphous silicate feature in the IR spectrum of PB 8 is commonly observed in O-rich circumstellar envelopes, which could imply this PN has a carbon-based dust. However, the strong features at 23.5, 27.5, and 33.8 $ \mu $m are mostly attributed to crystalline silicates (Molster et al., 2002). The features seen at 6.2, 7.7, 8.6, and 11.3 $ \mu $m are related to polycyclic aromatic hydrocarbons (PAHs) (García-Lario et al., 1999), together with broad features at 21 and 30 $ \mu $m corresponding to a mixed chemistry having both O-rich and C-rich dust grains. The far-IR emission fluxes at 65 and 90 $ \mu $m (Yamamura et al., 2010) could be related to relatively warm forsterite grains, which emit at a longer wavelength. The 65 $ \mu $m emission may be related to a crystalline water-ice structure, although its presence cannot be confirmed at the moment.

Figure: Observed Spitzer spectrum (black line) of PB8 are compared with the continuum predicted by the model MC2 (blue line) and MC3 (red line). It also shows the photometric measurements for 12, 25, 60, and 100 $ \mu $m (denoted by green diamonds) from IRAS (Helou & Walker, 1988), 8.3, 12.1, 14.7, and 21.34 $ \mu $m (orange downward triangle) from MSX (Egan et al., 2003), and the far-IR measurements (blue squares) $ F$(65$ \mu $m $ )=5.60\pm 0.19$, $ F$(90$ \mu $m $ )=5.83\pm 0.16$, and $ F$(140$ \mu $m $ )=1.74\pm 3.33$ Jy from AKARI/FIS (Yamamura et al., 2010). Note that the predicted nebular SED does not contain any nebular emission line fluxes.
\includegraphics[width=3.3in]{figures/fig5_PB8_IR.eps}

The thermal IR emission of PB 8 was modeled by adding a mixed dust chemistry to the pure-gas photoionization model described in the previous sections. We explored a number of grain sizes and species, which could provide a best-fitting curve to the Spitzer IR continuum (see Figure5). As seen, the model MC2 cannot produce the IR continuum, whereas the model MC3 fairly produces it. We tried to match the far-IR emission flux at 65 $ \mu $m, while the 140 $ \mu $m flux is extremely uncertain, $ F$(140$ \mu $m $ )=1.74\pm 3.33$ Jy. The dust-to-gas mass ratio was varied until the best IR continuum flux was produced. Table 5 lists the dust parameters used for the final model of PB8, the dust-to-gas ratio is given in Table 3. The geometry of the dust distribution is the same as the gas density distribution. The value of $ \rho_{\rm d}/\rho_{\rm g} = 0.01$ found here is in agreement with Lenzuni et al. (1989). The final dust model incorporates two different grains, amorphous carbon and crystalline silicate with optical constants taken from Hanner (1988) and Jaeger et al. (1994), respectively. We also note that the nebular SED (shown in Figure5), which is computed by MOCASSIN, does not contain any contributions from the nebular emission line fluxes.

For PB8, Lenzuni et al. (1989) estimated a grain radius of $ 0.017$ $ \mu $m from the thermal balance equation under the assumption of the UV absorption efficiency $ Q_{\rm UV}=1$. Stasinska & Szczerba (1999) argued that the method of Lenzuni et al. underestimates the grain radius, and one cannot derive the grain size in such a way. Our photoionization modeling implies that dust grains with a radius of $ 0.017$ $ \mu $m produce a very warm emission higher than $ T_{\rm d} = 85$K. The final dust model uses two discrete grain sizes, namely grain radii of 0.16 $ \mu $m (warm) and 0.40 $ \mu $m (cool), which can fairly reproduce the observed thermal infrared SED with wavelengths less than 80 $ \mu $m. Smaller grain sizes can produce hot emission that increases the continuum at shorter wavelengths ($ <10$ $ \mu $m), whereas larger grain sizes add cooler emission that may depict as a rise in the continuum at longer wavelengths ($ >80$ $ \mu $m). Although the current two grain sizes can well reproduce the Spitzer SED of PB 8, the solutions may not be unique. A dust model with more than two grain sizes may also be possible, but it needs more computational simulations to find the best-fit model. Moreover, inhomogeneous dust distribution and viewing angles (see Figure 2 in Ercolano et al., 2005) can also change the predicted SED. As there is no information on the inclination of dust grains and their geometry, so we assumed that they follow the gas density distribution.

There is a discrepancy in fluxes with wavelengths higher than 80 $ \mu $m, which could be attributed to a possible inhomogeneous dust distribution. We note that the band measurements with wavelengths higher 100 $ \mu $m could have high uncertainties, e.g., $ F$(140$ \mu $m $ )=1.74\pm 3.33$Jy. We also note a small discrepancy for fluxes with wavelengths less than 15 $ \mu $m, which could be related to the difference between the SL aperture ( $ 3.7 \times 57$ arcsec$ ^2$) and the LL aperture ( $ 10.7 \times 168$ arcsec$ ^2$) used for the SL spectrum (5.2-14.5$ \mu $m) and the LL spectrum (14.0-38.0$ \mu $m), and uncertainties in scaling the LL spectrum (see Sec. 2). As both the LL and SL apertures covering some areas larger than the optical angular diameter of PB8 (7 arcsec), they could also be contaminated by the ISM surrounding the nebula.


Table 6: Comparison of predictions from the models and the observations. The observed, dereddened intensities are in units such that $ I$(H$ \beta $)$ =100$. Columns (6)-(12) give the ratios of predicted over observed values in each case.
Line $ \lambda_{0}$(Å) Mult $ I_{\rm obs}$ Err(%) MC1 MC2 MC3
Normal M-rich Total Normal M-rich Total
H, He recombination lines
H$ \beta $ 4861.33 H4 100.000 5.0 1.000 0.772 0.228 1.000 0.771 0.229 1.000
H$ \alpha $ 6562.82 H3 282.564 6.0 1.031 0.801 0.247 1.047 0.799 0.247 1.047
H$ \gamma$ 4340.47 H5 45.666 5.0 1.019 0.784 0.228 1.013 0.784 0.229 1.013
H$ \delta$ 4101.74 H6 24.285 5.0 1.057 0.813 0.235 1.048 0.813 0.236 1.049
HI 3970.07 H7 14.466 6.0 1.089 0.838 0.242 1.080 0.837 0.243 1.080
HI 3835.39 H9 6.784 6.0 1.069 0.822 0.238 1.060 0.822 0.239 1.061
He I 3888.65 2 19.892 6.0 0.702 0.531 0.235 0.766 0.532 0.236 0.768
He I 7065.28 10 4.265 7.0 0.752 0.552 0.202 0.754 0.555 0.203 0.758
He I 5875.64 11 17.127 6.0 1.089 0.852 0.473 1.325 0.850 0.473 1.323
He I 4471.47 14 6.476 5.0 1.014 0.787 0.411 1.199 0.786 0.412 1.198
He I 4026.21 18 3.116 6.0 0.976 0.757 0.366 1.123 0.756 0.367 1.123
He I 7281.35 45 0.815 8.0 1.126 0.842 0.339 1.181 0.844 0.340 1.185
He I 6678.15 46 5.233 6.0 1.020 0.802 0.432 1.233 0.799 0.432 1.231
He I 4921.93 48 1.737 5.0 1.014 0.790 0.402 1.191 0.788 0.403 1.191
Heavy-element recombination lines
II 6578.05 2 0.545 9.0 0.575 0.438 0.126 0.563 0.437 0.126 0.563
II 7231.34 3 0.234 17.0 1.088 0.840 0.257 1.096 0.837 0.257 1.094
II 7236.42 3 0.464 10.0 0.988 0.762 0.233 0.995 0.760 0.233 0.993
II 4267.15 6 0.781 7.0 0.857 0.670 0.218 0.888 0.667 0.218 0.885
II 5666.64 3 0.192 25.0 0.114 0.048 0.683 0.731 0.048 0.685 0.732
II 5676.02 3 0.084 : 0.116 0.049 0.693 0.741 0.048 0.694 0.743
II 5679.56 3 0.260 18.0 0.157 0.066 0.940 1.006 0.066 0.942 1.007
II 4601.48 5 0.099 21.0 0.073 0.031 0.420 0.451 0.030 0.421 0.452
II 4607.16 5 0.083 25.0 0.070 0.029 0.400 0.429 0.029 0.401 0.430
II 4613.87 5 0.063 30.0 0.069 0.029 0.395 0.424 0.029 0.396 0.424
II 4621.39 5 0.085 24.0 0.068 0.028 0.390 0.418 0.028 0.391 0.419
II 4630.54 5 0.289 10.0 0.075 0.031 0.429 0.460 0.031 0.430 0.461
II 4643.06 5 0.122 18.0 0.059 0.025 0.338 0.362 0.025 0.339 0.363
II 4994.37 24 0.099 21.0 0.066 0.028 0.420 0.448 0.028 0.421 0.449
II 5931.78 28 0.151 30.0 0.045 0.019 0.284 0.303 0.019 0.285 0.304
II 5941.65 28 0.115 : 0.110 0.047 0.696 0.743 0.046 0.697 0.743
II 4638.86 1 0.206 12.0 0.181 0.197 0.527 0.724 0.196 0.527 0.723
II 4641.81 1 0.380 8.0 0.248 0.270 0.720 0.990 0.268 0.721 0.989
II 4649.13 1 0.458 8.0 0.391 0.426 1.136 1.562 0.423 1.137 1.561
II 4650.84 1 0.221 12.0 0.169 0.184 0.491 0.675 0.183 0.491 0.674
II 4661.63 1 0.222 12.0 0.215 0.234 0.624 0.858 0.232 0.625 0.857
II 4676.24 1 0.184 13.0 0.218 0.237 0.633 0.870 0.236 0.633 0.869
II 4319.63 2 0.081 26.0 0.364 0.397 1.067 1.465 0.395 1.068 1.463
II 4336.83 2 0.054 36.0 0.161 0.176 0.472 0.648 0.175 0.472 0.647
II 4349.43 2 0.197 13.0 0.346 0.378 1.016 1.395 0.376 1.017 1.393
II 3749.48 3 0.281 11.0 0.132 0.143 0.375 0.518 0.142 0.376 0.518
II 4414.90 5 0.036 : 0.489 0.524 1.275 1.799 0.521 1.278 1.799
II 4416.97 5 0.090 24.0 0.109 0.116 0.283 0.399 0.116 0.284 0.399
II 4072.15 10 0.265 11.0 0.331 0.363 0.987 1.350 0.360 0.988 1.348
II 4075.86 10 0.275 11.0 0.460 0.505 1.374 1.879 0.501 1.375 1.876
II 4085.11 10 0.086 26.0 0.190 0.209 0.568 0.776 0.207 0.568 0.775
II 4121.46 19 0.163 16.0 0.063 0.069 0.191 0.260 0.069 0.191 0.260
II 4132.80 19 0.202 13.0 0.099 0.109 0.301 0.410 0.108 0.301 0.410
II 4153.30 19 0.250 12.0 0.115 0.126 0.348 0.474 0.125 0.348 0.473
II 4110.79 20 0.147 17.0 0.060 0.066 0.182 0.248 0.066 0.182 0.248
II 4119.22 20 0.087 25.0 0.374 0.411 1.133 1.544 0.408 1.133 1.541
II 4699.22 25 0.026 : 0.093 0.103 0.283 0.386 0.102 0.283 0.385
II 4906.81 28 0.096 21.0 0.096 0.105 0.289 0.394 0.104 0.289 0.394
II 4924.53 28 0.154 15.0 0.101 0.111 0.307 0.418 0.111 0.307 0.417
Collisionally excited lines
$ ^{{d}}$ 5754.64 3F 0.346 14.0 0.495 0.186 0.506 0.692 0.199 0.509 0.708
6548.03 1F 7.667 6.0 0.926 0.393 0.613 1.006 0.418 0.631 1.048
6583.41 1F 22.318 6.0 0.972 0.412 0.643 1.055 0.438 0.662 1.100
3726.03 1F 17.103 6.0 0.897 0.947 0.061 1.008 1.035 0.065 1.100
3728.82 1F 9.450 6.0 0.782 0.813 0.044 0.857 0.890 0.047 0.936
$ ^{{d}}$ 7318.92 2F 0.227 18.0 0.530 0.491 0.538 1.029 0.546 0.539 1.085
$ ^{{d}}$ 7319.99 2F 0.811 8.0 0.451 0.418 0.536 0.954 0.465 0.538 1.003
$ ^{{d}}$ 7329.66 2F 0.387 12.0 0.518 0.480 0.537 1.017 0.535 0.539 1.074
$ ^{{d}}$ 7330.73 2F 0.471 10.0 0.419 0.388 0.536 0.924 0.432 0.537 0.969
4363.21 2F 0.528 7.0 1.733 0.927 0.007 0.935 0.995 0.008 1.003
4958.91 1F 116.957 5.0 1.130 0.858 0.137 0.995 0.886 0.143 1.028
5006.84 1F 348.532 5.0 1.132 0.859 0.137 0.996 0.887 0.143 1.030
[Ne II] 12.82$ \mu $m   24.370 ... 0.516 0.696 0.209 0.905 0.716 0.207 0.923
3868.75 1F 19.164 6.0 1.131 0.784 0.006 0.790 0.816 0.006 0.822
3967.46 1F 5.689 6.0 1.147 0.795 0.006 0.801 0.828 0.006 0.835
15.55$ \mu $m   110.660 ... 1.006 1.054 0.203 1.257 1.050 0.206 1.255
36.02$ \mu $m   7.360 ... 1.275 1.331 0.236 1.566 1.326 0.239 1.565
[S II] 4068.60 1F 0.223 : 1.004 0.699 0.011 0.710 0.772 0.012 0.784
6716.47 2F 0.957 7.0 0.978 0.742 0.026 0.769 0.809 0.028 0.837
6730.85 2F 1.441 7.0 1.010 0.773 0.032 0.805 0.843 0.034 0.877
6312.10 3F 0.639 9.0 3.617 1.984 0.015 2.000 2.109 0.016 2.126
18.68$ \mu $m   54.820 ... 2.495 1.974 0.393 2.367 2.008 0.395 2.403
33.65$ \mu $m   30.360 ... 2.076 1.624 0.225 1.849 1.652 0.226 1.878
[Cl III] 5517.71 1F 0.366 14.0 0.940 0.711 0.014 0.725 0.736 0.014 0.750
5537.88 1F 0.366 14.0 1.054 0.806 0.020 0.826 0.834 0.021 0.855
[Ar III] 7135.78 1F 15.477 7.0 1.048 0.775 0.035 0.809 0.796 0.035 0.831
7751.10 2F 3.493 7.0 1.113 0.822 0.037 0.859 0.845 0.038 0.883
8.99$ \mu $m   14.970 ... 1.657 1.483 0.351 1.834 1.490 0.351 1.841
H$ \beta $ $ ^{\mathrm{a}}$/10$ ^{-12}$ ergcm$ ^{-2}$s$ ^{-1}$ 19.7 13.0 0.884 0.863 0.255 1.118 0.856 0.254 1.110
$ \tau$(HI) $ ^{\mathrm{b}}$ 0.556 0.581 0.651
$ \tau$(He I) $ ^{\mathrm{c}}$ 0.336 0.343 0.422
$ ^{\mathrm{a}}$
The intrinsic H$ \beta $ line flux of the entire nebula.
$ ^{\mathrm{b}}$
Optical depth at the HI photoionization threshold (13.6eV).
$ ^{\mathrm{c}}$
Optical depth at the He I photoionization threshold (24.6eV).
$ ^{\mathrm{d}}$
Recombination contribution estimated by equations (1) and (2) included in the predicted lines.

Ashkbiz Danehkar
2018-03-28