4 Nonlinear analysis for large amplitude solitary waves

Anticipating constant profile solutions, we shall consider Eqs. (9 )-(12) in a stationary frame traveling at a constant normalized velocity $ M$ (to be referred to as the Mach number), implying the transformation $ \xi=x-Mt$. The space and time derivatives are thus replaced by $ \partial/\partial x=d/d\xi$ and $ \partial/\partial t=-Md/d\xi$, respectively, so Eqs. (9)-(12) take the form:

$\displaystyle -M\dfrac{dn}{d\xi}+\frac{d(nu)}{d\xi}=0,$ (21)

$\displaystyle -M\dfrac{du}{d\xi}+u\dfrac{du}{d\xi}=\dfrac{d\phi}{d\xi}-\frac{\sigma} {n}\dfrac{dp}{d\xi},$ (22)

$\displaystyle -M\dfrac{dp}{d\xi}+u\dfrac{dp}{d\xi}+3p\dfrac{du}{d\xi}=0,$ (23)

$\displaystyle \frac{d^{2}\phi}{d\xi^{2}}=-(\beta+1)+n+\beta\left[ 1-\frac{\phi} {(\kappa-\tfrac{3}{2})}\right] ^{-\kappa+1/2}.$ (24)

We assume that the equilibrium state is reached at both infinities ( $ \xi\rightarrow\pm\infty$). Accordingly, we integrate and apply the boundary conditions $ n=1$, $ p=1$, $ u=0$ and $ \phi=0$ at $ \pm\infty$. One thus obtains

$\displaystyle u=M\left( 1-\frac{1}{n}\right) ,$ (25)

$\displaystyle u={M-(M}^{2}{+2\phi-3n^{2}\sigma+3\sigma)}^{1/2},$ (26)

and

$\displaystyle p=n^{3}.$ (27)

Combining Eqs. (25)-(27), we obtain the following biquadratic equation for the cool electron density,

$\displaystyle {3\sigma n^{4}}-({M}^{2}{+2\phi+3\sigma)n^{2}}+{M}^{2}=0\,.$ (28)

The solution of Eq. (28) may be written as

$\displaystyle {n=}\dfrac{1}{2}\left( n_{(+)}\pm n_{(-)}\right) ,$ (29)

where

$\displaystyle n_{(+)}$ $\displaystyle {\equiv}\left[ \dfrac{{2\phi+}\left( {M+}\sqrt{3{\sigma} }\right) ^{2}}{3{\sigma}}\right] ^{1/2},$ (30)
$\displaystyle n_{(-)}$ $\displaystyle {\equiv}\left[ \dfrac{{2\phi+\left( {M-}\sqrt{3{\sigma}}\right) ^{2}}}{3{\sigma}}\right] ^{1/2}.$ (31)

From the boundary conditions, $ n=1$ at $ \phi=0$, it follows that the negative sign must be taken in Eq. (29). Furthermore, we shall assume that $ M>\sqrt{3\sigma}$, i.e., that the cool electrons are supersonic, while the hot electrons are subsonic, thus we require that $ M<1$.

Reality of the density variable imposes the requirement $ {2\phi+\left(
{M-}\sqrt{3{\sigma}}\right) ^{2}>0}$, which implies a limit on the electrostatic potential value $ \vert\phi_{\max}\vert=\frac{1}{2}\left( {M-}\sqrt{3{\sigma}}\right) ^{2}$ associated with negative solitary structures (positive electric potentials, should they exist, satisfy the latter condition automatically, and are thus not limited).

Substituting the density expression (29)-(31) into Poisson's equation (24) and integrating, yields the pseudo-energy balance equation for a unit mass in a conservative force field, if one defines $ \xi $ as ``time'' and $ \phi $ as ``position'' variable:

$\displaystyle \frac{1}{2}\left( \frac{d\phi}{d\xi}\right) ^{2}+\Psi(\phi)=0,$ (32)

where the Sagdeev pseudopotential $ \Psi (\phi )$ is given by

$\displaystyle \Psi(\phi)$ $\displaystyle =\beta\left[ 1-\left( 1+\frac{\phi}{-\kappa+\tfrac{3}{2} }\right) ^{-\kappa+3/2}\right] +(1+\beta)\phi$    
  $\displaystyle +\frac{1}{6\sqrt{3{\sigma}}}\left[ \left( {M+}\sqrt{3{\sigma}}\right) ^{3}-{{\left( {M-}\sqrt{3{\sigma}}\right) ^{3}}}\right.$    
  $\displaystyle -\left( {2\phi+}\left[ {M+}\sqrt{3{\sigma}}\right] ^{2}\right) ^{3/2}$    
  $\displaystyle \left. +{\left( {2\phi+\left[ {M-}\sqrt{3{\sigma}}\right] ^{2}}\right) }^{3/2}\right] .$ (33)

Figure 2: (Color online) Variation of the lower limit $ M_{1}$ (lower curves) and the upper limit $ M_{2}$ (upper curves) with the hot-to-cold electron density ratio $ \beta $ for different values of the temperature ratio $ \sigma $. Solitons may exist for values of the Mach number $ M$ in the region between the lower and the upper curve(s) of the same style/color. Curves: (a-b) $ \sigma =0.01$ (solid), $ 0.02$ (dashed), and $ 0.04$ (dot-dashed), and (c) $ \sigma =0.01$ (solid), $ 0.1$ (dashed), and $ 0.2$ (dot-dashed) Here, we have taken: (a) $ \kappa =2$, (b) $ \kappa =100$ (quasi-Maxwellian), and (c) $ \kappa =1.65$.
\includegraphics[
height=4.6406in,
width=2.4664in
]{figures/fig2.eps}

Figure 3: (Color online) Variation of the lower limit $ M_{1}$ (lower curves) and the upper limit $ M_{2}$ (upper curves) with the suprathermality parameter $ \kappa $ for different values of the temperature ratio $ \sigma $ (upper panel), and density ratio $ \beta $ (bottom panel). Solitons may exist for values of the Mach number $ M$ in the region between the lower and upper curves of the same style/color. Upper panel: $ \sigma =0.01$ (solid curve), $ 0.02$ (dashed), and $ 0.04$ (dot-dashed). Here, we have taken $ \beta =2$. Lower panel: $ \beta =1.8$ (solid), $ 2$ (dashed), $ 2.2$ (dot-dashed), and $ 5$ (solid circles). Here, $ \sigma =0.02$.
\includegraphics[
height=3.3122in,
width=2.6792in
]{figures/fig3.eps}

Ashkbiz Danehkar
2018-03-28